
SAND: Decoupling Sanitization from Fuzzing for Low Overhead

Ziqiao Kong†
ETH Zurich AND

Nanyang Technological University
ziqiao001@e.ntu.edu.sg

Shaohua Li†
ETH Zurich

shaohua.li@inf.ethz.ch

Heqing Huang
City University of Hong Kong

heqhuang@cityu.edu.hk

Zhendong Su
ETH Zurich

zhendong.su@inf.ethz.ch

Abstract—Sanitizers provide robust test oracles for various
software vulnerabilities. Fuzzing on sanitizer-enabled pro-
grams has been the best practice to find software bugs. Since
sanitizers need to heavily instrument a target program to insert
run-time checks, sanitizer-enabled programs have much higher
overhead compared to normally built programs.

In this paper, we present SAND, a new fuzzing framework
that decouples sanitization from the fuzzing loop. SAND per-
forms fuzzing on a normally built program and only invokes
sanitizer-enabled programs when input is shown to be interest-
ing. Since most of the generated inputs are not interesting, i.e.,
not bug-triggering, SAND allows most of the fuzzing time to be
spent on the normally built program. To identify interesting
inputs, we introduce execution pattern for a practical execution
analysis on the normally built program.

We realize SAND on top of AFL++ and evaluate it on 12
real-world programs. Our extensive evaluation highlights its
effectiveness: on a period of 24 hours, compared to fuzzing
on ASan/UBSan-enabled and MSan-enabled programs, SAND
respectively achieves 2.6x and 15x throughput and detects 51%
and 242% more bugs.

1. Introduction

Fuzzing has been one of the most successful approaches
to finding security vulnerabilities [11], [41]. At a high level,
fuzzers generate a large number of new inputs and execute
the target program on each of them. Fuzzers typically rely
on observable test oracles such as crashes to report bugs.
However, many security flaws do not always yield crashes
and thus are not detectable. Sanitizers are designed to tackle
this problem. At compile-time, when sanitizers are en-
abled, compilers will heavily instrument the target program
to insert various checks. At run-time, violations on these
checks will result in program crashes. Fuzzing on sanitizer-
enabled programs is thus more effective in discovering soft-
ware bugs. To date, the most widely-used sanitizers include
AddressSanitizer (ASan) [28], UndefinedBehaviorSanitizer
(UBSan) [2], and MemorySanitizer (MSan) [29].

Sanitizers, despite their extraordinary bug-discovery ca-
pability, have two main drawbacks. First, sanitizers bring

0. † Equal contribution

1 _TIFFfree(*read_ptr);
2 ...
3 read_buff = *read_ptr;
4 if (!read_buff)
5 {
6 read_buff = limitMalloc(buffsize);
7 }
8 else
9 {

10 if (prev_readsize < buffsize)
11 {
12 new_buff =
13 _TIFFrealloc(read_buff, buffsize);
14 if (!new_buff)
15 {
16 free(read_buff);
17 read_buff = limitMalloc(buffsize);
18 }
19 else
20 read_buff = new_buff;
21 }
22 }
23

24 read_buff[buffsize] = 0;

Figure 1: A simplified Use-after-Free bug from libtiff in
CVE-2023-26965. Line 24 triggers the bug because the freed
buffer in line 1 is not re-allocated neither in line 6 nor in
lines 13 and 17.

significant performance overhead to fuzzing. As our evalu-
ation in Section 2.1 will show, ASan, UBSan, and MSan
averagely slow down fuzzing speed by a factor of 3.6x,
2.0x, and 46x, respectively. Since fuzzing is computationally
intensive, such high sanitizer overheads inevitably impede
both the performance of fuzzers and the adoption of sani-
tizers. Many approaches have been proposed to reduce the
run-time overhead of sanitizers. For example, Debloat [39]
optimizes ASan checks via sound static analysis. SANRA-
ZOR [37] removes likely redundant ASan and UBSan checks
through dynamic profiling. FuZZan [15] designs dynamic
metadata structure to improve the performance of ASan
and MSan. Notwithstanding these optimization efforts, the
overhead imposed by sanitizers remains considerable. For
instance, as our evaluation will show, the state-of-the-art
effort, Debloat, can only reduce less than 10% run-time cost
of ASan. Moreover, all these schemes require significant
modifications to the existing sanitizer code base, which
hinders its compatibility with diverse infrastructures.

The second drawback is that some sanitizers are mu-
tually exclusive. For instance, because ASan and MSan
maintain the same metadata structure, they can not be used
together. Consequently, a fuzzer has to fuzz ASan-enabled
program and MSan-enabled program separately.

Our insight. Since sanitizers provide the security oracle
for execution, all current fuzzers execute sanitizer-enabled
programs on every fuzzer-generated input to verify validity.
We now raise this question: Can we decide whether an
input triggers a bug without truly executing a sanitizer-
enabled program? Theoretically, it seems paradoxical and
infeasible as only by executing an input can we know if the
input is bug-triggering. However, our empirical evaluation
will substantiate its feasibility. The key insight is that bugs
are strongly connected to execution paths. For instance,
Figure 1 shows a simplified code snippet from CVE-2023-
26965, which contains a Use-after-Free bug in line 24.
Normal and most execution paths are {1 → 3 → 6 → 24},
{1 → 3 → 12 → 16 → 17 → 24}, or {1 → 3 → 12 →
20→ 24}, where the freed buffer read_buff in line 1 is
correctly re-allocated. However, when the execution path is
{1→ 3→ 24}, the freed buffer read_buff is incorrectly
used in line 24. This buggy execution has a unique path not
seen in other normal executions.

Since triggering such control-flow sensitive bugs re-
quires exercising unique execution paths, our intuition is
that we can encapsulate inputs with unique execution paths
by executing them on normally built programs, then only
feed these inputs into sanitizer-enabled programs to reduce
overall sanitization overhead. Conceptually, our intuition
can effectively tackle control-flow sensitive bugs, e.g., Use-
after-Free bugs, since triggering such kinds of bugs needs
to exercise a unique execution path, e.g., from the free
point to the use point. For other bugs, such as Buffer-
Overflow and Use-of-Uninitialized-Memory, they are more
“data sensitive”. For example, triggering a Buffer-Overflow
bug often requires significantly changing the buffer offset
value. Nevertheless, such data-flow changes can often result
from or be reflected by control-flow information [13]. As our
illustration in Section 2.3 shows, Buffer-Overflow bugs are
often control-flow related, such as unusual loop iterations,
and thus can be identified via unique execution paths. In
fact, previous studies [16], [32] have also implicitly shown
that bugs correlate highly to executions.

Our approach. Inspired by this observation, we propose a
new fuzzing framework that decouples sanitization from the
fuzzing loop for acceleration. In the framework, the fuzzer
(1) performs fuzzing on a binary that is built normally,
i.e., without enabling sanitizers, then (2) selects inputs that
have unique execution paths and runs them on the sanitizer-
enabled binaries to check if they trigger any bugs. Take the
program shown in Figure 1 as an example: During fuzzing,
when we first encounter an input that has the execution
path {1 → 3 → 6 → 24}, we re-execute the input on
the sanitizer-enabled binary. The result is that this input
does not trigger any bug. For all future inputs that have
the same execution path, we will not validate them on the

sanitizer-enabled binary. When we first encounter an input
that has the execution path {1→ 3→ 24}, similarly, we re-
execute the input on the sanitizer-enabled binary. The result
is that this input triggers a Use-after-Free bug. As long as
only (1) a small fraction of inputs have unique execution
paths and (2) the buggy execution reliably has a unique
execution path, we can significantly reduce the sanitization
overhead during fuzzing. As our evaluation in Section 4 will
show, only less than 2% of inputs on average have unique
execution paths, and more than 96% of buggy executions
have a unique execution path.

There is a key challenge in our approach: How to
efficiently obtain execution path during fuzzing? Previous
research has demonstrated that obtaining fine-grained exe-
cution information like execution path is too costly to be
practical [33], [10]. In our implementation, we tackle this
problem by designing an efficient and scalable execution
pattern to approximate the execution path. Execution pattern
discards the order information in the execution path as a
trade-off for efficiency. For instance, for the execution path
{1 → 3 → 24}, its execution pattern is {1, 3, 24} meaning
that code regions 1, 3 and 24 are executed. Although such
approximation may cause imprecision in theory, our evalua-
tion will demonstrate that this design is accurate enough to
identify unique execution paths.

Our idea is generally applicable to the gray-box fuzzer
family. Since AFL++ [9] is the most popular gray-box fuzzer
in both academia and industry, we realized our idea on top
of it and implemented a tool named SAND. We use 12
real-world programs widely used by the fuzzing community
to evaluate SAND. Our evaluation shows that in 24 hours,
compared to traditional fuzzing on ASan/UBSan-enabled
and MSan-enabled programs, SAND respectively achieves
2.6x and 15x throughput and detects 51% and 242% more
bugs. Compared to fuzzing on normally built programs,
SAND can achieve nearly the same level of throughput
while covering 258% more bugs. In summary, we make the
following contributions:

• We identify that bugs are strongly connected with unique
execution paths and further design an approximate yet
accurate execution pattern to efficiently obtain execution
path information during fuzzing.

• We propose a novel fuzzing framework that decouples
sanitization from the fuzzing loop by selectively feeding
fuzzer-generated inputs into sanitizers.

• We implement our idea in a tool named SAND. We con-
duct in-depth evaluations to understand its effectiveness
in terms of bug-finding, throughput, and coverage.

2. Observation and Illustration

In this section, we first introduce our observations on
the high overhead introduced by sanitizers and the rarity
of bug-triggering inputs. Then, we use three real-world bug
examples to illustrate the strong connections between bugs
and execution paths.

TABLE 1: Execution speed, i.e., number of executions per second, of native programs and sanitizer-enabled programs. The
column "Slowdown" refers to the ratio of the native speed to the sanitizer speed. It is calculated by dividing the native
speed by the sanitizer speed. ✗ indicates a compilation failure.

Programs Native ASan Debloat UBSan MSan
Speed Speed Slowdown Speed Slowdown Speed Slowdown Speed Slowdown

imginfo 2,964 869 3.4 907 3.3 1,968 1.5 43 68.4
infotocap 2,676 685 3.9 ✗ ✗ 1,962 1.4 43 62.1
jhead 2,963 859 3.5 888 3.3 2,652 1.1 45 66.1
mp3gain 1,488 627 2.4 634 2.4 917 1.6 42 35.3
mp42aac 1,917 472 4.1 ✗ ✗ 682 2.8 42 46.1
mujs 1,491 425 3.5 440 3.4 685 2.2 42 35.9
nm 2,209 586 3.8 ✗ ✗ 1,597 1.4 43 50.8
objdump 573 212 2.7 ✗ ✗ 250 2.3 38 15.1
pdftotext 410 151 2.7 ✗ ✗ 192 2.1 35 11.7
tcpdump 1,754 432 4.1 493 3.6 561 3.1 42 42.0
tiffsplit 2,093 665 3.2 ✗ ✗ 1,247 1.7 43 48.7
wav2swf 2,757 486 6.0 517 5.5 1,211 2.5 43 63.6
Average 1,941 539 3.6 - - 1,160 2.0 42 45.5

TABLE 2: Ratio of bugger-triggering inputs.

Programs Executions Bug-triggering Ratio
imginfo 8.4M 92,345 1.1%
infotocap 14.0M 23,784 0.2%
jhead 16.7M 468,202 2.8%
mp3gain 13.9M 105,349 0.8%
mp42aac 4.6M 16 <0.01%
mujs 13.5M 19,134 0.1%
nm 11.6M 517 0.0%
objdump 10.4M 328,546 3.2%
pdftotext 7.3M 1,358 <0.01%
tcpdump 8.6M 10,980 0.1%
tiffsplit 11.6M 23,017 0.2%
wav2swf 7.7M 563,588 7.3%
Average 10.7M 136,403 1.3%

2.1. High Overhead of Sanitizers

Despite the fact that sanitizers are highly effective in ex-
posing software bugs, they are initially designed for software
developers to conduct in-house testing rather than fuzzing.
To benchmark sanitizer overhead in fuzzing, we use all
12 benchmark programs from our evaluation section. For
each program, we compile five versions of it, i.e., native
program, ASan-enabled program, Debloat-enabled program,
UBSan-enabled program, and MSan-enabled program. The
native program refers to a normally built program without
using any sanitizers. Since Debloat [39] achieves the state-
of-the-art optimization for ASan, we include it to understand
the significance of its improvement. We use AFL++ as the
default fuzzer. For each program, we:
Step (1) Use AFL++ to fuzz the native program and collect
the first one million generated inputs to the program. All

these inputs are saved into disk1.
Step (2) Run AFL++ again on the native program to bench-
mark its running time on the saved one million inputs. The
AFL++ here is slightly modified to fetch inputs from the
disk instead of generating them.
Step (3) Repeat Step(2) on four sanitizer-enabled programs
to collect their running time on the same set of inputs.

We ran the above experiment 10 times and reported
the average fuzzing speed. All experimental settings are the
same as our later evaluation in Section 4.1. Table 1 presents
the average speed, i.e., number of executions per second,
of each program. Compared to native programs, ASan,
UBSan, and MSan averagely reduce the speed by 3.6x,
2.0x, and 45.5x, respectively. Specifically, ASan reduces the
speed by 2.4x∼6.0x, UBSan by 1.1x∼3.1x, and MSan by
11.7x∼68.4x. Even for the best ASan optimization Debloat,
its improvement over ASan is rather insignificant compared
to the native program. Such huge sanitizer overheads in-
evitably hinder the fuzzing throughput. Because sanitizers
bring fuzzing a significantly stronger bug-detection capabil-
ity, current fuzzers have to bear the following speed loss.
Suppose that we have a way to reduce or even eliminate
sanitizers’ overhead while still keeping their bug-detection
capability, fuzzing would then benefit significantly from it.

2.2. Rareness of Bug-triggering Inputs

Fuzzers typically generate a large body of inputs for
a target program. It is intuitive that bug-triggering inputs
are rarely met during fuzzing. To understand the ratio of
bug-triggering inputs to all the generated inputs, we count
the total number of bug-triggering inputs and all generated

1. We use tmpfs [35] to reduce I/O overhead.

1 int wav_convert2mono(struct WAV *dest, int rate)
2 {
3 ...
4 for(i=0; i < src->size; i += channels) {
5 int j;
6 int pos2 = ((int)pos)*2;
7 for(j=0;j < fill; j += 2) {
8 dest->data[pos2+j+0] = 0;
9 dest->data[pos2+j+1] = src->data[i]+128;

10 }
11 pos += ratio;
12 }
13 ...
14 }

Figure 2: A simplified Buffer-Overflow bug from wav2swf
in CVE-2017-11099. Line 8 triggers a buffer overflow when
the two for loop iterations significantly change the buffer
offset “pos2+j”.

1 void JBIG2Stream::
2 readTextRegionSeg(Guint segNum, ...)
3 {
4 ...
5 numSyms = 0;
6 for (i = 0; i < nRefSegs; ++i) {
7 if ((seg = findSegment(refSegs[i]))) {
8 if (seg->getType()==jbig2SegSymbol) {
9 numSyms += seg->getSize();

10 } else if (seg->getType() == jbig2Se) {
11 codeTables->append(seg);
12 }
13 ...
14 syms = (JBIG2Bitmap **)gmallocn(numSyms);
15 ...
16 }

Figure 3: A simplified Integer-Overflow bug from xpdf
(containing pdftotext) in CVE-2022-38171. Line 9 triggers
an integer overflow in numSyms when the if branch in
line 8 is evaluated to True many times.

inputs during 24 hours of fuzzing. The experimental data is
from our later evaluation in Section 4.3.

Table 2 lists the number of total generated inputs, the
number of bug-triggering inputs, and the ratio. We can find
that averagely only 1.3% of inputs are bug-triggering. For
some programs, it is even rarer. For instance, on pdftotext,
less than 1 out of 104 inputs trigger bugs. We can conclude
that Only a tiny fraction of fuzzer-generated inputs are bug-
triggering. Blindly sanitizing all of them is thus a huge waste
of resources.

2.3. Illustrative Examples

In this section, we present examples of real-world bugs
to demonstrate that inputs that trigger bugs follow distinct
execution paths not seen with normal inputs, further rein-
forcing the rationale behind our approach.
Buffer-Overflow. A Buffer-Overflow bug is triggered when
buffer access exceeds the allocated range of stack or heap
memory. Figure 2 shows a real-world Buffer-Overflow bug
from wav2swf in CVE-2017-11099. The buggy buffer ac-
cess is located in line 8. When the two for loops iterate a

1 char *
2 _nc_tic_expand(const char *src, bool tic_format)
3 {
4 static char *buffer;
5 ...
6 buffer = typeRealloc(char, length, buffer);
7 int bufp = 0;
8 if (ch == '%' && REALPRINT(str + 1))
9 buffer[bufp++] = *str++;

10 else if (ch == 128)
11 buffer[bufp++] = '\\';
12 } else if (ch == '\033')
13 buffer[bufp++] = '\\';
14 else
15 bufp += 4;
16 str++;
17 ...
18 return buffer;
19 }
20

21 int fmt_entry(...) {
22 ...
23 char *tmp = _nc_tic_expand(boxchars, 1);
24 while (*tmp != '\0') {
25 ...
26 }
27 }

Figure 4: A simplified Use-of-Uninitialized-Memory bug
from infotocap in CVE-2019-17595. The buffer *tmp in
line 24 is uninitialized when the execution jumps from line
7 to line 15.

significant number of times, the offset pos2+j exceeds the
buffer range of dest->data. The original cause is from
the large values of both src->size and fill. But these
unusual data subsequently lead to a unique execution path,
i.e., a long chain of executions {1 → 4 → 7 → 8 → 9 →
8 → 9 → · · · → 4 → 7 → 8 → 9 → · · · }. In practice, we
observe that data-sensitive bugs like Buffer-Overflow often
accompany control-flow changes that normal executions do
not exercise. Thus, using unique execution path as the indi-
cator for sanitization can help us encapsulate bug-triggering
inputs. The many Buffer-Overflow bugs identified by SAND
in our evaluation will further confirm this rationale.

Integer-Overflow. Figure 3 shows an Integer-Overflow bug
in line 9, where the variable numSyms overflows its valid
range when the if guard in line 8 is frequently evaluated
to true. Although integer overflow is a locally data-sensitive
bug type, it can be identified through unusual control-flow
visits. In this example, the overflowed value in numSyms
subsequently causes a small allocated buffer in line 14,
which leads to buffer overflow and dramatic control-flow
changes in the rest of the execution.

Use-of-Uninitialized-Memory. Figure 4 shows a Use-of-
Uninitialized-Memory bug in line 24, where the while loop
is conditioned on an uninitialized memory pointed to by
tmp. The buffer tmp is obtained via the function call to
_nc_tic_expand(), which returns an allocated buffer.
Normally, buffer will be initialized either in line 9 or
in lines 11 and 13. The corresponding (partial) execution
paths are {7→ 9→ 18→ 24}, {7→ 11→ 18→ 24}, and

{7 → 13 → 18 → 24}. Buggy executions, however, jump
from line 7 to line 15 without initializing buffer. The
corresponding buggy execution path is {7 → 15 → 18 →
24}, which is different from all normal executions.

We have illustrated that both control-flow-related and
data-sensitive bugs can result from/in unusual execution
paths. This observation motivates us to utilize the execution
path for determining whether the expensive sanitizer checks
should be invoked.

3. Our Approach

This section introduces the design of our new fuzzing
framework SAND. Section 3.1 defines execution path and
its proxy approximation, execution pattern. Section 3.2 de-
scribes our proposed fuzzing framework. Section 3.3 clari-
fies the technical details of the implementation.

3.1. Preliminary: Execution Path and its Proxy

Our illustrative bugs exemplify that bug-triggering in-
puts have unique execution paths. We formally define the
execution path as follows:

Definition 3.1 (Execution Path). Given an execution E , the
execution path of E is defined as ΠE = [e1, e2, · · · , en],
where ei is the unique id of the code edge executed by E .
Note that, ΠE is ordered meaning that ei is executed before
ej if i < j.

Execution path is a temporal transition sequence of
all executed code when executing an input on the target
program. It contains the full information on control-flow
visits. For instance, the buggy execution in Figure 4 {7 →
15 → 18 → 24} has the execution path as [7, 15, 18, 24].
Execution path is order-sensitive meaning that [7, 15, 18, 24]
̸= [15, 7, 18, 24]. Unfortunately, obtaining the execution path
of execution is too expensive to be practical in fuzzing [33],
[10]. Since throughput is a key factor in fuzzing effective-
ness, we cannot directly use execution path in fuzzer design.
In this paper, we propose to use execution pattern as an
approximate yet accurate proxy for the execution path. We
define execution pattern as follows:

Definition 3.2 (Execution Pattern). Given an execution
E , the execution pattern of E is defined as TE =
{e1, e2, · · · , em}, where ei ̸= ej(i ̸= j) and ei is the unique
id of the code edge reached by E . Note that, TE is order-
insensitive, e.g., {e1, e2, e3} = {e2, e3, e1}.

Execution pattern records all executed code edges of an
execution. For instance, the buggy execution in Figure 4
{7 → 15 → 18 → 24} has the execution pattern as
{7, 15, 18, 24}. Execution pattern is order-insensitive, e.g.,
{7, 15, 18, 24} = {15, 7, 18, 24}. Intuitively, the execution
pattern inevitably loses precision in approximating the exe-
cution path. But it still captures the uniqueness of buggy ex-
ecutions. For the bug in Figure 4, normal execution patterns
are {7, 9, 18, 24}, {7, 11, 18, 24}, and {7, 13, 18, 24}. The

0 1 2 3 4 5 6 7 8 9

[5, 3, 9, 7] 0 0 0 1 0 1 0 1 0 1

[1, 7, 9, 2]

0 0 0 1 0 1 0 1 0 1

0 1 1 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9

Bitmap Coverage map

⇒ ⇒
⇒ ⇒

Executions

{3, 5, 7, 9}

{1, 2, 7, 9}

[1, 7] 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1⇒ ⇒

{1, 7}

Execution Pattern

Figure 5: Executions (left) are monitored through bitmaps
(middle), which are used in AFL++ to update the coverage
map (right). Our execution patterns (bottom right) can be
derived from these bitmaps.

buggy execution pattern {7, 15, 18, 24}, although containing
no ordering information, is distinct from normal ones. Our
evaluation in Section 4.2 will use extensive experiments to
demonstrate that execution patterns can precisely encapsu-
late buggy executions.

An essential benefit of the execution pattern is its ease of
acquisition during fuzzing. Fuzzers like AFL++, by default,
utilize an efficient data structure, bitmap, to collect visited
code edges of an execution. Figure 5 shows an example
of this procedure. The bitmap is initialized to all zeros
for a new execution. For the execution path [5, 3, 9, 7],
the corresponding positions in the bitmap are marked. This
bitmap is then used to update a global coverage map with a
logic OR. For the next execution [1, 7, 9, 2], a similar bitmap
is initialized and then marked. The coverage map is then
cumulatively updated to record all code edges visited by all
previous executions. The design of execution pattern allows
us to obtain it effortlessly from the bitmap of execution, as
shown in the bottom right in Figure 5. Although the execu-
tion pattern might lose precision in modeling the execution
path, we view it as a trade-off for performance. Further-
more, our evaluation will highlight that execution pattern is
accurate enough in encapsulating buggy executions.

3.2. Sanitization-decoupled Fuzzing

Based on the above formalization to execution patterns,
we introduce our new fuzzing framework design. We first
describe the general workflow of a coverage-guided fuzzer
(CGF). The gray area in Figure 6 outlines the high-level
fuzzing sketch of a CGF. Before fuzzing starts, the fuzzer
compiles the target program with fuzzer instrumentation
and/or sanitizers. Then, it fuzzes the target as follows:
(1) Seed selection. Select one seed from the seed pool

according to predefined strategies.
(2) Mutation. Mutate the seed to generate new test inputs.
(3) Executing on the target program. Execute a test input

on the target program.

Target
Program

Queue

0 1 0 1 1 1
Coverage Bitmap

Bugs

Unique Execution Pattern

CGF loop

Mutation

Crash ASan
Enabled
Program

New bits MSan
Enabled
Program

Our augmentation

Crash Crash

…

(1)

(2)

(3)

(4)
(5)

Figure 6: SAND fuzzing loop.

(4) Coverage and execution analysis. Collect coverage
feedback from the execution. If the execution increases
coverage, save it to the seed pool; if the execution
results in a crash, report the corresponding input as bug-
triggering and save it to the disk; otherwise, discard it.

As one can see, CGFs rely on the execution result of the
target program to detect bugs. To maximize bug detection
capability, current CGFs usually compile the target program
with sanitizers enabled. This routine significantly slows
down fuzzing speed due to the high overhead of sanitizers.

In this paper, we tackle this problem by decoupling
sanitization from the conventional fuzzing loop. The green
part in Figure 6 highlights our approach. Before fuzzing
starts, the fuzzer compiles multiple versions of the same
program: (1) a normally built program without any sanitizer
enabled (denoted as Pfuzz), on which the fuzzer performs
fuzzing, and (2) a set of sanitizer-enabled programs, e.g.,
ASan-enabled program (PASan) and MSan-enabled pro-
gram (PMSan). The fuzzer follows the same steps as a CGF
to fuzz the normally built program. But, after each execution
of the target program, we introduce a new step:
(5) Conditional sanitization. Extract the execution pattern

of the execution from its bitmap. If the execution
pattern has been observed before, i.e., not unique,
discard it. Otherwise, the current input is identified as
sanitization-required. The fuzzer executes this input on
each sanitizer-enabled program (PASan, PMSan, etc.)
and reports any discovered crashes.

Example. Figure 7 illustrates the process of identifying
sanitization-required inputs. Starting from the first execution
with pattern {3, 5, 7, 9}, the fuzzer identifies it as a unique
execution pattern and thus sanitization-required. The second
execution has the same pattern as before; thus, sanitization
is unnecessary. Similarly, the third and fifth executions have
unique patterns not seen before and thus require saniti-
zation. Our hypothesis is that all input triggering unique
bugs also have unique execution patterns. Assuming that
the fifth execution {6, 4, 2, 3, 5} is buggy, the fuzzer can
successfully identify the bug during sanitization. Since exe-

{3, 5, 7, 9}

{1, 2, 7, 9, 10}

{6, 4, 2, 3, 5}

Execution Pattern

{3, 5, 7, 9}

{1, 2, 7, 9, 10}

{6, 4, 2, 3, 5}

{1, 2, 7, 9, 10}

{3, 5, 7, 9}

(Sanitization-required)

(Sanitization-required)

(Sanitization-required)

Unique

Unique

Unique

Figure 7: Out of all eight consecutive executions from
top to bottom, three are identified as unique and require
sanitization.

Algorithm 1: The New Fuzzing Loop of SAND

Input: Seed pool S.
1 while ¬Abort() do
2 s← SelectSeed(S) // Seed selection

3 s′ ← Mutate(s) // Generate input

4 ret, bitmap ← Execute(s′,Pfuzz)
5

6 TE ← GetExecutionPattern(bitmap)
7 if IsUnique (TE) then
8 foreach Psan ∈ {PASan,PMSan, · · · } do
9 retsan ← SanExecute(s′,Psan)

10 if retsan == crash then
11 ret = crash

12

// Our augmentation

13 if ret == crash then // Crash?

14 save s′ to disk

15 if covers new code then // New coverage?

16 add s′ to S

cutions holding the same execution path are likely to have
similar semantics, e.g., exercising the same functionality
or triggering the same bug, we only need to sanitize one
buggy execution from the same set of unique execution paths
to identify the bug. In this example, the first time we sanitize
the execution with pattern {6, 4, 2, 3, 5}, we can discover the
bug. For all future executions with the same pattern, they are
likely to trigger the same bug and do not need sanitization.
Our evaluation in Section 4.3 will support this claim.

This newly introduced conditional sanitization does not
alter the standard fuzzing logic. The execution pattern is
obtained from the already-available bitmap collected on the
normally built target program. To determine whether or not
an execution pattern has been observed before, we use a hash
table to store all observed execution patterns (see details in
the next section §3.3).

Algorithm 1 sketches the implementation pseudo-code
of our new fuzzing framework. In each fuzzing loop (line 1),

Algorithm 2: Identify unique execution patterns

1 IsUnique(TE):
2 cksum ← Hash(TE)
3 if HashTable[cksum] ̸= 1 then
4 HashTable[cksum] = 1
5 return True;

6 return False;

the fuzzer first selects a seed s and mutates it to generate a
new input s′ (lines 2-3). Next, it executes the normally built
program Pfuzz on the input to collect its execution return
ret and bitmap bitmap (line 4). Then, the fuzzer extracts the
execution pattern TE from bitmap (line 6) and determines
whether or not this execution pattern has been observed
(line 7). If TE is new, the fuzzer labels it as sanitization-
required and executes each of the available sanitizer-enabled
programs Psan on the input s′ (lines 8-9). Meanwhile, TE
will be added to the hash table. If any execution crashes,
meaning the input s′ triggers a bug, the fuzzer sets the return
status to crash (lines 10-11). Finally, the fuzzer continues
the original procedure: save the new input as bug-triggering
if the execution return status is crash (lines 13-14); or queue
it to the seed pool if it increases coverage (lines 15-16).

Our new fuzzing framework decouples sanitization from
standard fuzzing logic. It has the following main advantages:
• Orthogonal to CGFs. We only introduce an orthogonal

step to execute sanitizer-enabled programs on inputs with
unique execution patterns. In theory, any AFL-family
fuzzers can be augmented by our approach without mod-
ifying their main fuzzing logic.

• Sanitizer inclusive. Normally, some sanitizers like ASan
and MSan are mutually exclusive, meaning that they
cannot be enabled on the same program. Current fuzzers
can only perform fuzzing on a program with only one of
such sanitizers enabled. In our new framework, multiple
sanitizer-enabled programs can be used for sanitization
simultaneously. We will provide additional technical de-
tails in Section 3.3 to explain how we support multiple
sanitizers.

• Effective. Our evaluation will show that only a small
fraction (averagely ≤ 2%) of inputs have unique exe-
cution patterns and require sanitization, thus significantly
improving fuzzing throughput.

• Practical. First, sanitizers are directly used for instrumen-
tation, and thus, we do not need to change their code base.
Second, the only modification we applied to a fuzzer is
the augmented new step after each execution. Other parts
of the fuzzer are not touched.

3.3. Implementation

Unique Execution Pattern Analysis. We obtain the exe-
cution pattern of an execution from its bitmap. In our im-

plementation, we use the simplify_trace() function
in AFL++ to achieve this goal. This design and implemen-
tation allow us to efficiently get execution patterns during
fuzzing. To identify unique execution patterns, we calculate
checksums of all observed execution patterns and use a hash
map to store them. Algorithm 2 details the pseudocode of
the process. The hash table HashTable is initialized to all
zeros at the start of fuzzing. In our implementation, we
use XXH32 hashing algorithm[1] because of its fast speed.
The size of HashTable is set to 32-bit, which supports a
maximum of 4, 294M different checksums. Our evaluation
in Section 4.6 demonstrates that the cost of hashing is
negligible, and no instances of hash collision are observed.

Note that normal executions can also have unique ex-
ecution patterns, such as the first and third executions in
Figure 7. Our approach is efficient as long as the overall
ratio of unique execution patterns during fuzzing is low. As
our evaluation in Section 4.4 shows, the average ratio is less
than 2%.

Program Instrumentation in SAND. The fuzz target
Pfuzz is instrumented by SAND to include the neces-
sary instrumentation code for coverage collection. Since
all the sanitizer-enabled programs are used for sanitiza-
tion only, no such instrumentation is needed. Thus, we
directly use the LLVM compiler to compile the pro-
gram with different sanitizers. Because ASan and MSan
are mutually exclusive, we combine them in SAND.
By default, we use two sanitizer-enabled programs, i.e.,
ASan/UBSan-enabled program (PASan/UBSan) and MSan-
enabled program (PMSan). To reduce the burden of invoking
PASan/UBSan and PMSan, we utilize the forkserver[36]
mode to create one forkserver to communicate with all
sanitizer-enabled programs efficiently during fuzzing.

4. Evaluation

We implemented SAND based on AFL++-4.05c [9], the
latest version at the time of implementation. AFL++ is the
state-of-the-art gray-box fuzzer and has been widely used
as the baseline fuzzer in many previous study [20], [22],
[8]. Our evaluation first evaluates the accuracy of execution
pattern (§4.2) in encapsulating buggy executions and then
extensively evaluates the end-to-end fuzzing performance of
SAND in terms of bug-finding (§4.3), throughput (§4.4), and
code coverage (§4.5).

4.1. Experimental Setup

Benchmark. We use real-world programs from the bench-
marking test platform UNIFUZZ for our evaluation. We
use the provided seeds from UNIFUZZ for all fuzzing
campaigns. To maximally understand SAND’s capability in
different sanitizers, we use all three popular sanitizers, i.e.,
ASan, UBSan, and MSan. Due to the compatibility issue
of MSan, we failed to instrument 8 out of 20 programs
with MSan. We thus exclude them from our evaluation.

TABLE 3: All 12 real-world programs from UNIFUZZused
in the evaluation.

Type Program

Image
imginfo
jhead
tiffsplit

Audio
mp3gain
wav2swf

Video mp42aac

Type Program

Text
infotocap
mujs
pdftotext

Binary
nm
objdump

Network tcpdump

Our full evaluation is done on the remaining 12 programs.
These programs Table 3 lists the details. These programs
cover a diverse range of input types, including image (e.g.,
imginfo), audio (e.g., wav2swf), video (e.g., mp42aac), text
(e.g., infotocap), binary (e.g., objdump), and network packet
(e.g., tcpdump).
Baseline. Since ASan and UBSan are compatible with each
other, we combine them together when building binaries.
For each program fuzzed in SAND, we compile a normally
built binary Pfuzz and two sanitizer-enabled binaries, i.e.,
PASan/UBSan and PMSan.

We choose AFL++ as the baseline fuzzer and use it
to fuzz (1) normally built programs (denoted as “AFL++-
Native”), (2) ASan/UBSan-enabled programs (denoted as
“AFL++-ASan/UBSan”), and (3) MSan-enabled programs
(denoted as “AFL++-MSan”). All fuzzers and programs are
built with LLVM-14, the latest stable version at the time of
implementation.

To understand if SAND can surpass the existing san-
itizer optimization schemes, we also choose the state-of-
the-art ASan optimization technique, Debloat [39]. Because
Debloat optimizes ASan, it can also be used together with
UBSan. To maximize its bug detection capability, we let
AFL++ to fuzz on Debloat/UBSan-enabled program (de-
noted as “AFL++-Debloat/UBSan”). All programs instru-
mented with Debloat are built with LLVM-12 because this
is the highest LLVM version that Debloat supports. Since
compiling infotocap, mp42aac, nm, objdump, and pdftotext
with Debloat results in compilation failures, we exclude
them for AFL++-Debloat/UBSan.
Hardware and Setup. We conduct all experiments on a
machine equipped with an AMD 3990x CPU and 256G
memory running Ubuntu 22.04. Following Klee’s [17] stan-
dard we repeated all experiments 10 times and ran all
fuzzing campaigns for 24 hours. We apply the Mann-
Whitney U-test [23] to our results to understand their sta-
tistical significance.

4.2. Effectiveness of Execution Pattern

To understand if unique execution patterns can accu-
rately encapsulate bug-triggering inputs/executions, we ex-
tensively analyze all executions during fuzzing. Specifically,
we conduct the following experiments on the 12 programs:
Step (1) Use AFL++ to fuzz the normally built program.

TABLE 4: Ratios of inputs that have unique execution
patterns. “All” refers to the ratio of all generated inputs
that have unique execution patterns. “Bug” refers to the
ratio of bug-triggering inputs that have unique execution
patterns.Ratios of inputs that have unique execution patterns.
“All” refers to the ratio of all generated inputs that have
unique execution patterns. “Bug” refers to the ratio of bug-
triggering inputs that have unique execution patterns.

Programs All Bug
imginfo 0.22% 72.8%
infotocap 8.11% 98.3%
jhead 1.44% 91.6%
mp3gain 0.18% 98.2%
mp42aac 0.04% 100.0%
mujs 5.34% 99.0%

Programs All Bug
nm 0.35% 100.0%
objdump 1.30% 100.0%
pdftotext 4.82% 100.0%
tcpdump 2.09% 100.0%
tiffsplit 1.17% 99.2%
wav2swf 0.01% 100.0%
Average 2.09% 96.58%

Step (2) For each generated input, we first obtain its execu-
tion pattern, then examine whether or not this execution
pattern is unique, i.e., has been observed before.

Step (3) For each input, no matter whether or not its execu-
tion pattern is unique, we run it on ASan- and UBSan-
enabled programs to test if it triggers a bug.

We ran the experiments for 24 hours and repeated them
ten times. Because we need to run through sanitizer-enabled
programs for every input in order to gather a sufficiently
large number of inputs, we exclude MSan due to its deficient
speed. With this set of experiments, we want to answer Q1:
out of all executions in Step (2), how many of them are
marked as having unique execution patterns? Q2: out of all
bug-triggering inputs/executions in Step (3), how many of
them are also marked as having unique execution patterns
in Step (2)?

The first question Q1 can tell us the ratio of unique
execution patterns during fuzzing. A smaller ratio indicates
that sanitization is required less frequently, resulting in
higher speed. The second question Q2 can inform us how
effective the unique execution pattern is in encapsulating
bug-triggering inputs. Table 4 shows the result. The second
column shows that, on average, only 2% inputs have unique
execution patterns. For more than half of the programs, the
ratio is even below 1%. We can thus conclude that Only a
small fraction of fuzzer-generated inputs have unique execu-
tion patterns. The third column shows that more than 96% of
bug-triggering inputs have unique execution patterns. This
means that if we only pass inputs with unique execution
patterns to sanitizer-enabled programs, we can successfully
sanitize 96% of the buggy inputs. Note that we do not
deduplicate all bug-triggering inputs here; most of them
are, in fact, duplicates. Considering the same bug can be
triggered multiple times during fuzzing, 96% accuracy can
already ensure, with a high probability, that no bugs will be
missed in practice. Our upcoming evaluation will provide
extensive end-to-end evaluation results to confirm this high
precision.

0

5

10
imginfo

0.0

2.5

5.0

7.5
infotocap

X 0.0

2.5

5.0

7.5
jhead

0

5

10

mp3gain

0

2

4
mp42aac

X 0.0

2.5

5.0

7.5

mujs

0

2

4

nm

X 0

2

4
objdump

X 0

2

4

pdftotext

X 0

5

10

15
tcpdump

0

5

10

15
tiffsplit

X 0
5

10
15

wav2swf

AFL-Native AFL++-ASan/UBSan AFL++-Debloat/UBSan AFL++-MSan SAND

Figure 8: The number of unique bugs detected by fuzzers across repetitions. ✗indicates a compilation failure.

TABLE 5: The mean number of unique bugs across repeti-
tions. The ✗ indicates a compilation failure. The largest mean
numbers are highlighted in green .

Programs
AFL++-

SANDp-valNative ASan/
UBSan

Debloat/
UBSan MSan

imginfo 0 7.9 7.7 0.4 8.3 0.18

infotocap 0.3 5.1 ✗ 1.7 6.4 0.03

jhead 0.8 5.7 4.8 6.4 7.1 0.03

mp3gain 4.5 8.1 7.9 1.1 7.8 0.71

mp42aac 0 2 ✗ 0 3 0.00

mujs 0 7.9 8.1 2.7 7.8 0.75

nm 0 1.3 ✗ 0 3.5 0.00

objdump 1 4 ✗ 1.2 3.3 1.00

pdftotext 3.1 2.5 ✗ 1 3.7 0.09

tcpdump 0 6.2 6.6 3.5 12.3 0.00

tiffsplit 4.3 7.3 ✗ 2 13.7 0.00

wav2swf 7.2 12.3 12.8 4 16.8 0.03

Average 1.8 5.9 - 2.0 7.8

TABLE 6: Accumulative number of unique bugs. ✗indicates
a compilation failure. “All” refers to the number of unique
bugs found together by all other fuzzers except for SAND.

Programs
AFL++-

All SANDNative ASan/
UBSan

Debloat/
UBSan MSan

imginfo 0 10 10 1 11 11
infotocap 1 8 ✗ 3 9 10
jhead 5 9 8 10 10 12
mp3gain 10 12 12 2 12 14
mp42aac 0 2 ✗ 0 2 4
mujs 0 9 9 3 9 10
nm 0 2 ✗ 0 2 7
objdump 1 4 ✗ 2 4 4
pdftotext 5 3 ✗ 3 5 5
tcpdump 0 12 15 9 23 36
tiffsplit 8 9 ✗ 2 11 18
wav2swf 13 22 21 10 22 23
Sum 43 102 - 45 120 154

4.3. Bug-Finding Capability

Finding bugs is the ultimate goal of fuzzing. In this
section, we evaluate the bug-finding capability of all fuzzers.
In particular, we would like to answer the following two
questions:

Q1 Does SAND find more bugs compared to other fuzzers?

Q2 Does SAND miss any bugs found by other fuzzers?

To answer these questions, we collect all crashes found
by each fuzzer. We triage all crashes according to their root
causes to quantify the number of unique bugs each fuzzer
finds. Our deduplication is done with both the stack frame
information from GDB [19] and manual analysis.

Number of Unique Bugs. We plot the number of unique
bugs in every repetition in Figure 8. Table 5 aggregates the
results and reports the mean number of unique bugs. On
average, SAND finds 32% more (7.8) bugs than the second-
best fuzzer (5.9 in AFL++-ASan/UBSan). On 7 out of 12

programs, SAND found more bugs than all other fuzzers
with statistical significance (i.e., p-value < 0.05). On some
programs, SAND can cover significantly more (> 50%) bugs.
For instance, on tcpdump, SAND can averagely find 12.3
bugs, while the next-best fuzzer AFL++-Debloat/UBSan
only finds 6.6 bugs. For the remaining five programs, SAND
finds statistically the same (p-value > 0.05) number of
unique bugs. In summary, our result answers Q1: SAND
has a significantly stronger bug-finding capability than all
other fuzzers.

Compared to AFL++-Native, ASan, as well as Debloat
and UBSan, has positive effects on 11 out of 12 programs.
MSan finds fewer bugs on four programs, which is due
to its extremely low fuzzing speed. An interesting case is
pdftotext, where AFL++-Native can detect more bugs than
other fuzzers except for SAND. The main reason is that all
bugs in pdftotext can be triggered without sanitizers, while
AFL++-Native has higher throughput than all other fuzzers.
Nevertheless, the overall result confirms the necessity of
using sanitizers during fuzzing.

AFL++

AFL++-ASan/UBSan

AFL++-Debloat/UBSan

AFL++-MSan

SAND

14

6 13

12

4 1

7

7

29

6

17

4

34

Figure 9: Unique bugs found by fuzzers.

Heap Buffer Overflow
21%

Integer Overflow
27%

Stack Buffer Overflow
2%

Unknown Segmentfault
3%

Null Pointer Dereference
1%

Global Buffer Overflow
3%

Misc. Undefined Behaviors
9%

Memcpy Overlap
1%

Use Of Uninitialized Value
29%

Use After Free
1%

Float Point Exception
1%

Out Of Memory
2%

45

32

5

2

5

41

1

1

4

3

1

Figure 10: The distribution of diverse types of bugs found by
SAND.

Accumulative Number of Unique Bugs. To understand the
overlaps of bugs found by different fuzzers, we accumulate
all unique bugs found by each fuzzer in each repetition.
Figure 9 illustrates the unique bug sets of different fuzzers
through a Venn diagram. It shows that SAND covers all bugs
discovered by all other fuzzers. Moreover, SAND finds 34
additional bugs that all other fuzzers can not cover. Table 6
breaks down the total number of bugs discovered by each
fuzzer. Compared to other fuzzers, SAND finds more bugs
on all programs. The second-to-last column “All” lists the
total number of bugs found by all other fuzzers together.
Even compared to “All”, SAND can still find more bugs in
each program. On some programs, SAND can even cover
2x ∼ 3x more bugs. For instance, SAND discovers 2x more
bugs on mp42aac and 3.5x more bugs on nm. In summary,
we can answer Q1 and Q2: SAND does not miss any bugs
and can find significantly more bugs.

Number of Unique Bugs Reported by Sanitizer-enabled
Programs. Of all the 154 unique bugs identified by SAND,
more than 75% of them are not detectable on the nor-
mally built programs. These bugs are reported after invoking
sanitizer-enabled programs in SAND.

Bug Types. Our approach relies on the control-flow infor-
mation to identify sanitizer-required inputs. Our observation,
as illustrated with bug examples in Section 2.3, is that data-
sensitive bugs like buffer overflow and integer overflow usu-
ally result from/in control-flow changes. Figure 10 reports
the types of bugs found by SAND. Firstly, SAND can indeed
find many control-flow-related bugs, such as the use of
uninitialized memory (45 bugs) and use after free (2 bugs).
The small number of use-after-free bugs is because they are
indeed relatively rare in practice [19]. Secondly, SAND can
find a large number of data-sensitive bugs, such as heap
buffer overflow (32 bugs) and integer overflow (41 bugs).
This outstanding result confirms our assumption that data-
sensitive bugs can be captured by control-flow information.
Given that SAND does not miss any bugs and finds both
control-flow and data-sensitive bugs, we can conclude that
our approach generally applies to all kinds of sanitizer-
detectable bugs.

False Negatives. Despite the outstanding performance of
SAND, we have no guarantee that SAND can cover all bugs.
Theoretically, SAND may have false negatives where certain
bugs are missed. This false negative impact can be inferred
from the mujs performance in Table 5, where SAND has
a slightly lower mean number of bugs (7.8) than AFL++-
ASan/UBSan (7.9) and AFL++-Debloat/UBSan (8.1). The
reason is that one bug in mujs was not triggered in all
repetitions of SAND, but in all repetitions in the other two
fuzzers. The execution pattern for this bug can sometimes be
seen in normal executions, which leads to the less frequent
discovery in SAND. Due to the stochastic nature of fuzzing,
triggering a bug only once is sufficient for SAND to detect
it in practice. Given the overall superior performance of
SAND, we believe that the moderate false negative issue
is acceptable and does not impede its general effectiveness.

4.4. Fuzzing Throughput

We now analyze the end-to-end fuzzing throughput, i.e.,
the total number of inputs generated and executed during
fuzzing. Figure 11 shows the average throughput of each
fuzzer normalized to AFL++-Native.

Compared to Sanitizers-enabled Fuzzers. SAND achieves
an average of 2.6x, 2.1x, and 150x throughput than AFL++-
ASan/UBSan, AFL++-Debloat/UBSan, and AFL++-MSan,
respectively. Moreover, SAND has significantly higher
throughput on all programs. On some of the programs, the
speedup rate is even higher. For instance, on nm, SAND ex-
ecutes 4x and 303x more inputs than AFL++-ASan/UBSan
and AFL++–MSan, respectively. It is worth mentioning that
SAND is equipped with all three sanitizers, including the
slowest MSan. All other fuzzers, on the other hand, only
support one or two sanitizers.

Compared to AFL++-Native. Overall, SAND achieves
75% of AFL++-Native’s throughput. On 4 out of 12 pro-
grams, SAND achieves more than 90% of AFL++-Native’s
throughput. The result shows that SAND successfully in-
creases the speed of fuzzing on sanitizer-enabled programs
to a near-native level.

im
gin

fo

inf
oto

cap jhe
ad

mp3
ga

in

mp4
2a

ac
mujs nm

ob
jdu

mp

pd
fto

tex
t

tcp
du

mp
tiff

spl
it

wav
2sw

f

Av
era

ge
0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Th
ro

ug
hp

ut

X X X X X X

AFL++-Native

AFL++-ASan/UBSan AFL++-Debloat/UBSan AFL++-MSan SAND

Figure 11: Relative throughput normalized to AFL++-Native. ✗indicates a compilation failure. "Average" refers to the
average throughput of all programs.

Unique Execution Pattern Ratio. Intuitively, a smaller
unique execution pattern ratio means that sanitizer-enabled
programs are less frequently invoked and, consequently,
have a higher throughput. To understand how this ratio
changes during fuzzing, we track the unique execution pat-
tern ratio every 40 seconds. Figure 12 plots the results. As
expected, at the start of fuzzing, the ratio is relatively high
because many execution patterns are new. With the fuzzing
going on, more and more inputs have duplicate execution
patterns, and thus, the ratio becomes significantly smaller.
This tendency is analogous to the saturation situation of
code coverage. Overall, SAND has less than 2% ratio on
10 out of 12 programs, meaning that only less than 2%
of inputs are fed into sanitizer-enabled programs for san-
itization. Although a slightly higher ratio is observed on
infotocap and mujs, these ratios are eventually all less
than 5%. According to the throughput data in Figure 11,
SAND has indeed relatively lower speedup rates on these
two programs.

4.5. Code Coverage

We use the afl-showmap utility in AFL++ to collect
the code coverage. Table 7 presents the average code cov-
erage achieved by each fuzzer on each program.

Compared to Sanitizers-enabled Fuzzers. SAND achieves
statistically higher code coverage on 9 out of 12 pro-
grams. For the other three programs, SAND has higher
code coverage but with no statistical significance. Intuitively,
since SAND has a much higher throughput than all other
sanitizer-enabled fuzzers, SAND executes more inputs and
thus achieves higher code coverage.

Compared to AFL++-Native. On 6 out of 12 programs,
there is no significant coverage difference between AFL++-
Native and SAND. For the remaining six programs, SAND
achieves almost the same code coverage as AFL++-Native,

0 4 8 12 16 20 24
Hours

0
2

5

10

15
R u

ni
qu

e (
%

)
infotocap
mp42aac
objdump
mp3gain
mujs
tiffsplit
pdftotext
tcpdump
nm
wav2swf
jhead
imginfo

Figure 12: The trend of Runqiue, i.e., the unique execution
pattern ratio, over time during fuzzing.

with an average of 0.53% less coverage. As analyzed be-
fore, SAND can achieve 75% throughput of AFL++-Native,
which accounts for the coverage drop in some programs.
Since bug-finding capability is the golden measuring metric
for fuzzing, although AFL++-Native can achieve relatively
higher code coverage, it has the worst bug-finding rate and
thus is less favorable in practice.

4.6. Hash in SAND

As the Algorithm 1 indicates, SAND utilizes a hash table
to store hash checksums for each execution pattern. In this
section, we evaluate the hash overhead of SAND and the
potential hash collision risk in the hash table.

Hash Overhead. We modified SAND to two versions to
precisely evaluate the hash overhead. First, NOHASH, where
lines 6-11 in Algorithm 1 are removed so that no hash
operations are performed. Second, SAND-HASH, where lines

TABLE 7: Code coverage (%) of fuzzers. ✗ indicates a compilation failure. “Diff” is the difference compared to AFL++-
Native. The highest code coverage compared to AFL++-Native is highlighted in green .

Programs AFL++
-Native

AFL++-
SANDASan/UBSan Debloat/UBSan MSan

Covp-val Diff Covp-val Diff Covp-val Diff Covp-val Diff
imginfo 13.36 11.89 0.00 -1.47 11.36 0.00 -2.00 8.88 0.00 -4.48 12.94 0.04 -0.42
infotocap 19.42% 17.85 0.03 -1.57 ✗ ✗ 14.05 0.03 -5.37 18.74 0.27 -0.68
jhead 14.96 14.94 0.37 -0.02 14.90 0.00 -0.06 14.85 0.37 -0.11 14.96 1.00 0.00
mp3gain 41.57 38.52 0.00 -3.05 38.60 0.00 -2.97 34.47 0.00 -7.10 39.88 0.00 -1.69
mp42aac 7.15 6.80 0.00 -0.35 ✗ ✗ 6.78 0.00 -0.37 7.04 0.16 -0.11
mujs 27.97 21.04 0.00 -6.93 20.79 0.00 -7.18 21.18 0.00 -6.79 27.26 0.00 -0.71
nm 7.80 7.27 0.00 -0.53 ✗ ✗ 6.69 0.00 -1.11 7.53 0.01 -0.27
objdump 6.98 5.10 0.00 -1.88 ✗ ✗ 6.60 0.00 -0.38 6.67 0.00 -0.31
pdftotext 16.69 13.07 0.00 -3.62 ✗ ✗ 14.77 0.00 -1.92 15.18 0.00 -1.51
tcpdump 18.36 16.77 0.21 -1.59 17.25 0.38 -1.11 12.20 0.21 -6.16 17.33 0.47 -1.03
tiffsplit 20.96 17.93 0.00 -3.03 ✗ ✗ 13.34 0.00 -7.62 20.59 0.47 -0.37
wav2swf 2.04 1.96 0.00 -0.08 1.89 0.00 -0.15 1.60 0.00 -0.44 2.00 0.37 -0.04

8-11 in Algorithm 1 are removed so that hash operations are
performed as the normal SAND, but no sanitizer-enabled
programs are invoked. We use the same random seed for
both modified fuzzers to generate an identical set of inputs
on the same initial seed pool. We run both fuzzers on each
program ten times and record the total fuzzing time on the
first one million inputs. The second and third columns in
Table 8 report the average speed of both fuzzers. On 10 out
of 12 programs, both fuzzers do not have statistically differ-
entiable (p-val < 0.05) speed. Only on mujs and pdftotext,
SAND-HASH is slightly slower at a rate of 1.6% and 0.7%
while averagely SAND-HASH only incurs 0.7% penalty. We
can then conclude that hashing operations in SAND have
negligible overhead to fuzzing.

Hash Collision. Hash collision can happen when two
different execution patterns either have the same hash check-
sum or result in the same index in the hash table. Because
the effectiveness of SAND relies on the accurate identifica-
tion of unique execution patterns, hash collisions may poten-
tially harm the performance. To evaluate the hash collision
rate of SAND, we use the SAND-HASH and expand it to save
all execution patterns (rather than checksums) to disk. When
an execution pattern is marked as observed, we compare
this execution pattern with the saved execution pattern byte
to byte. Any difference in the comparison signifies a hash
collision. The last column in Table 8 lists the number of
hash collisions for the first one million inputs. The result
shows that none hash collision was detected. The main
reason is that unique execution patterns are rare (averagely
2% according to Section 2.2), making the hash table sparse
and hard to have collisions.

5. Discussion

Compatibility to Other Advanced Fuzzers. SAND does
not touch the main fuzzing logic of a CGF. It is orthogonal

TABLE 8: The hash overhead and collision in SAND.

Programs
NOHASH SAND-HASH

Speed Speedp-val Overhead Collision
imginfo 3,114 3,100 0.65 0.47% 0
infotocap 3,011 2,982 0.15 0.96% 0
jhead 3,327 3,327 0.94 0.00% 0
mp3gain 1,929 1,915 0.43 0.73% 0
mp42aac 1,702 1,688 0.21 0.87% 0
mujs 1,841 1,812 0.01 0.58% 0
nm 2,421 2,389 0.26 0.36% 0
objdump 1,279 1,266 0.36 0.05% 0
pdftotext 408 405 0.00 0.66% 0
tcpdump 2,018 2,004 0.52 0.73% 0
tiffsplit 2,335 2,334 0.94 0.02% 0
wav2swf 2,830 2,817 0.36 0.48% 0
Average 2,185 2,170 0.74% 0

to many other fuzzer advances. For example, new mutation
strategies [3], [21], effective seed scheduling schemes [7],
[5], and hybrid fuzzing techniques [14], [30] can all be
normally integrated into a CGF fuzzer, which SAND can
further build upon. At a high level, in the sequence of
all mutated inputs during fuzzing, SAND’s effectiveness
depends on the fact that bug-triggering inputs are mostly
likely to have unique execution patterns. Therefore, dif-
ferent mutation strategies may affect SAND’s performance.
To understand SAND’s general applicability, we port it to
an alternative fuzzer MOpt [21], which uses a different
mutation scheduling strategy and can be manually turned
on in AFL++. We include the details in the appendix.

Alternative Test Oracles. Sanitizers essentially provide test
oracles for executions. These test oracles are customized
for security vulnerabilities. In practice, there exist many

other test oracles for different application scenarios. For in-
stance, when fuzzing Javascript JIT compilers [4], a seman-
tic correctness test oracle is usually provided. Differential
test oracles are applied to find incorrect outputs, such as
wrong implementations [27] and platform-dependent diver-
gences [38]. All these test oracles are usually expensive.
Applying our idea to selectively feed inputs into the costly
test oracle checkers could be beneficial and requires further
verification and exploration.

Incompatibility to Coverage-guided Tracing. Our current
execution pattern is collected from the coverage bitmap.
Some research efforts are trying to reduce coverage col-
lection overhead, such as HexCite [24] and UnTracer [25].
Such approaches break the coverage map and thus cannot
be used together with SAND. However, we would like to
highlight that the coverage collection overhead is much
smaller compared to sanitizers. Researchers [34] have shown
that the latest coverage collection approach used in AFL++
only brings a median of 15% overhead. Sanitizers like ASan
and MSan can incur 237∼6,836% overhead. Even if these
approaches can entirely eliminate coverage tracing overhead,
the overall benefit when sanitizers are used is small.

Limitations. Despite that SAND brings significant improve-
ment to fuzzing, it also comes with a few limitations. The
first limitation is the gap between the unique execution
pattern ratio and the bug-triggering input ratio. Our empir-
ical evaluation in Section 2.2 has shown that many bug-
triggering input ratios are below 0.5%, which is lower than
the average unique execution pattern ratio of 2%. This gap
indicates that there is still space for improvement. Designing
more effective execution abstraction is an interesting future
work. The second limitation is that although our evaluation
has confirmed that SAND did not miss any bugs, we can not
provide a theoretical guarantee. It would be interesting and
useful to explore sound execution analysis to eliminate this
concern.

6. Related work

Reducing Sanitizer Overhead. Some research efforts exist
to reduce sanitizer overhead. ASAP [31] removes sanitizer
checks to meet a required performance budget. FuZZan [15]
dynamically selects the most optimal metadata structure
for both ASan and MSan to reduce sanitization overhead
fuzzing. SanRazor [37] and Debloat [39] remove redundant
sanitization checks via either static or dynamic analysis.
SanRazor supports both ASan and UBSan while Debloat
only supports ASan. All of these techniques require sig-
nificant modifications to sanitizer implementations, which
inevitably hinders their practical adoption. SAND, on the
other hand, uses sanitizers without any modification. This
feature further brings the orthogonality of SAND to these
efforts. For instance, we can replace the ASan-enabled
program with Debloat-enabled program to benefit from the
improvement of Debloat.

Bug pattern. Igor [16] observes that all bug-triggering
inputs have some unusual execution behavior. For specific
bug types, UAFL [32] intuitively prioritizes memory oper-
ations of longer sequences to effectively detect User-After-
Free bugs. Dowser [12] selectively checks instructions that
access arrays in a loop for discovering buffer overflow
bugs. ParmeSan [26] leverages the knowledge from sanitizer
instrumentations to discover certain types of bugs faster.
PGE [18] finds that bug-triggering executions correlate with
execution prefixes. At a high level, the findings or insights
behind these approaches share similar motivations to our
execution pattern, i.e., bug-triggering inputs tend to have
unique execution features.

Improving Fuzzing Performance. Since the success
of AFL [36], the fuzzing community has seen a broad
range of new fuzzer developments. In particular, coverage-
guided grey-box fuzzers such as AFL++ [9], AFLFast [7],
and AFLGo [6] are the most widely adopted and studied
fuzzing techniques. Researchers have also put great efforts
into optimizing various aspects of fuzzing, such as seed
scheduling [5], mutation strategies [21], [3], and path explo-
rations [30], [14]. In theory, all these improvements are not
related to sanitizer-enabled programs and, therefore, are or-
thogonal to us. In practice, AFL++ has internally integrated
many advances such as RedQueen [3] and MOpt [21]. We
have demonstrated that our current implementation of SAND
atop AFL++ can successfully support the default and MOpt
modes. Extending our approach to other modes from AFL++
is inherently supported.

Reducing Coverage Collection Overhead. Some re-
searchers point out that coverage collection in fuzzing brings
extra overhead. Untracer [25] and HexCite [24] remove in-
strumentation code in visited code edges to reduce coverage
collection overhead. Zeror [40] shifts between diversely-
instrumented binaries to achieve low coverage collection
overhead on most executions. Odin [34] dynamically re-
compiles a binary when the instrumentation requirement
changes. Because all these approaches need to modify the
coverage bitmap, our approach is not compatible with them.
As has been analyzed in Section 5, coverage collection cost
is rather small compared to sanitizer overhead, and thus, our
approach is more beneficial.

7. Conclusion

We have presented a new fuzzing framework, SAND,
to decouple sanitization from the fuzzing loop. SAND per-
forms fuzzing on the normally built program and only
executes sanitizer-enabled programs when input is identified
as sanitization-required. SAND utilizes the fact that most of
the fuzzer-generated inputs do not need sanitization, which
enables it to spend most of the fuzzing time on the normally
built program. To identify sanitization-required inputs, we
have designed a practical and effective execution analysis
via the execution pattern.

We have evaluated SAND on 12 real-world programs.
Compared to the current fuzzing on sanitizer-enabled pro-
grams, SAND can significantly improve fuzzing performance
by achieving 16x throughput and finding 30% more bugs.
Our work represents an exciting research direction toward
the overhead-free adoption of sanitizers in fuzzing.

References

[1] xxhash: Extremely fast hash algorithm. https://github.com/Cyan4973/
xxHash, 2016. Accessed: December 7, 2023.

[2] UndefinedBehaviorSanitizer — Clang 18.0.0git documentation. https:
//clang.llvm.org/docs/UndefinedBehaviorSanitizer.html, 2022. Ac-
cessed: December 7, 2023.

[3] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gaw-
lik, and Thorsten Holz. Redqueen: Fuzzing with input-to-state cor-
respondence. In Proceedings 2019 Network and Distributed System
Security Symposium, NDSS’19, 2019.

[4] Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim
Blazytko, and Thorsten Holz. Jit-picking: Differential fuzzing of
javascript engines. In Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS’22, 2022.

[5] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha. Boosting
fuzzer efficiency: An information theoretic perspective. In Proceed-
ings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE’20, 2020.

[6] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS’17, 2017.

[7] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based greybox fuzzing as markov chain. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS’16, 2016.

[8] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. Fuzzolic:
Mixing fuzzing and concolic execution. Computers and Security, 108,
sep 2021.

[9] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
Afl++: Combining incremental steps of fuzzing research. In Pro-
ceedings of the 14th USENIX Conference on Offensive Technologies,
WOOT’20, 2020.

[10] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li,
Zhongyu Pei, and Zuoning Chen. CollAFL: Path Sensitive Fuzzing.
In 2018 IEEE Symposium on Security and Privacy (SP), S&P’18,
2018.

[11] Google. ClusterFuzz. https://google.github.io/clusterfuzz/, 2023.
Accessed: November 7, 2023.

[12] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Her-
bert Bos. Dowsing for overflows: A guided fuzzer to find buffer
boundary violations. In Proceedings of the 22nd USENIX Conference
on Security, SEC’13, 2013.

[13] Adrian Herrera, Mathias Payer, and Antony L. Hosking. Dataflow:
Toward a data-flow-guided fuzzer. ACM Trans. Softw. Eng. Methodol.,
32(5), jul 2023.

[14] Heqing Huang, Peisen Yao, Rongxin Wu, Qingkai Shi, and Charles
Zhang. Pangolin: Incremental hybrid fuzzing with polyhedral path
abstraction. In 2020 IEEE Symposium on Security and Privacy,
S&P’20, 2020.

[15] Yuseok Jeon, Wookhyun Han, Nathan Burow, and Mathias Payer.
Fuzzan: Efficient sanitizer metadata design for fuzzing. In Proceed-
ings of the 2020 USENIX Conference on Usenix Annual Technical
Conference, ATC’20, 2020.

[16] Zhiyuan Jiang, Xiyue Jiang, Ahmad Hazimeh, Chaojing Tang, Chao
Zhang, and Mathias Payer. Igor: Crash Deduplication Through
Root-Cause Clustering. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, CCS’21,
Virtual Event Republic of Korea, 2021.

[17] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. Evaluating Fuzz Testing. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
CCS’18, pages 2123–2138, Toronto Canada, 2018.

[18] Shaohua Li and Zhendong Su. Accelerating Fuzzing through Prefix-
Guided Execution. Proceedings of the ACM on Programming Lan-
guages, 7(OOPSLA1):1–27, April 2023.

[19] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee,
Yueyao Chen, Chenyang Lyu, Chunming Wu, Raheem Beyah, Peng
Cheng, Kangjie Lu, and Ting Wang. UNIFUZZ: A holistic and prag-
matic Metrics-Driven platform for evaluating fuzzers. In Proceedings
of the 30th USENIX Conference on Security Symposium, SEC’21,
2021.

[20] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. Pmfuzz:
Test case generation for persistent memory programs. In Proceedings
of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS’21,
2021.

[21] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee,
Yu Song, and Raheem Beyah. Mopt: Optimized mutation scheduling
for fuzzers. In Proceedings of the 28th USENIX Conference on
Security Symposium, SEC’19, 2019.

[22] Alessandro Mantovani, Andrea Fioraldi, and Davide Balzarotti.
Fuzzing with data dependency information. In 2022 IEEE European
Symposium on Security and Privacy, EuroS&P’22, 2022.

[23] Patrick E McKnight and Julius Najab. Mann-whitney u test. The
Corsini Encyclopedia of Psychology, 2010.

[24] Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W Davidson,
and Matthew Hicks. Same coverage, less bloat: Accelerating binary-
only fuzzing with coverage-preserving coverage-guided tracing. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS’21, 2021.

[25] Stefan Nagy, Anh Nguyen-Tuong, Jason D. Hiser, Jack W. David-
son, and Matthew Hicks. Same Coverage, Less Bloat: Accelerat-
ing Binary-only Fuzzing with Coverage-preserving Coverage-guided
Tracing. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, CCS’21, Virtual Event
Republic of Korea, 2021.

[26] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. Parmesan: Sanitizer-guided greybox fuzzing. In Proceedings of
the 29th USENIX Conference on Security Symposium, SEC’20, 2020.

[27] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Angelos D
Keromytis, and Suman Jana. Nezha: Efficient domain-independent
differential testing. In 2017 IEEE Symposium on security and privacy,
S&P’17, 2017.

[28] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. Addresssanitizer: A fast address sanity checker. In
Proceedings of the 2012 USENIX Conference on Annual Technical
Conference, ATC’12, 2012.

[29] Evgeniy Stepanov and Konstantin Serebryany. MemorySanitizer: Fast
detector of uninitialized memory use in C++. In 2015 IEEE/ACM
International Symposium on Code Generation and Optimization,
CGO’15, 2015.

[30] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In Proceedings 2016 Network and
Distributed System Security Symposium, NDSS’16, 2016.

[31] Jonas Wagner, Volodymyr Kuznetsov, George Candea, and Johannes
Kinder. High system-code security with low overhead. In 2015 IEEE
Symposium on Security and Privacy, S&P’15, 2015.

https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://google.github.io/clusterfuzz/

[32] Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang
Liu, Shengchao Qin, Hongxu Chen, and Yulei Sui. Typestate-guided
fuzzer for discovering use-after-free vulnerabilities. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engi-
neering, ICSE’20, Seoul South Korea, 2020.

[33] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu Song.
Be sensitive and collaborative: Analyzing impact of coverage metrics
in greybox fuzzing. In Proceedings of the 22nd International Sym-
posium on Research in Attacks, Intrusions and Defenses, RAID’19,
2019.

[34] Mingzhe Wang, Jie Liang, Chijin Zhou, Zhiyong Wu, Xinyi Xu, and
Yu Jiang. Odin: On-demand instrumentation with on-the-fly recom-
pilation. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
PLDI’22, 2022.

[35] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. De-
signing new operating primitives to improve fuzzing performance. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS’17, 2017.

[36] Michal Zalewski. American Fuzzy Lop. https://lcamtuf.coredump.cx/
afl/, 2014. Accessed: March 7, 2022.

[37] Jiang Zhang, Shuai Wang, Manuel Rigger, Pinjia He, and Zhendong
Su. SANRAZOR: Reducing redundant sanitizer checks in C/C++
programs. In 15th USENIX Symposium on Operating Systems Design
and Implementation, OSDI’21, 2021.

[38] Qian Zhang, Jiyuan Wang, and Miryung Kim. Heterofuzz: Fuzz
testing to detect platform dependent divergence for heterogeneous
applications. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE’21, 2021.

[39] Yuchen Zhang, Chengbin Pang, Georgios Portokalidis, Nikos Trian-
dopoulos, and Jun Xu. Debloating address sanitizer. In 31st USENIX
Security Symposium (USENIX Security 22), SEC’22, 2022.

[40] Chijin Zhou, Mingzhe Wang, Jie Liang, Zhe Liu, and Yu Jiang. Zeror:
Speed up fuzzing with coverage-sensitive tracing and scheduling.
In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE’20, Virtual Event Australia,
2020.

[41] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing:
A survey for roadmap. ACM Computing Surveys, 54(11s):1–36, 2022.

Appendix
General Applicability

As depicted in Figure 6, SAND only augments the
baseline CGF fuzzer with a conditional sanitization step.
Since no other part of the fuzzer is modified, SAND is, in
principle, generally applicable to other CGF or AFL-family
fuzzers. At a high level, in the sequence of all mutated inputs
during fuzzing, SAND’s effectiveness depends on the fact
that bug-triggering inputs are likely to have unique execu-
tion patterns. Therefore, different mutation strategies may
affect SAND’s performance. To understand SAND’s general
applicability, we port it to an alternative fuzzer MOpt [21],
which uses a different mutation scheduling strategy and can
be manually turned on in AFL++. We denote this new fuzzer
as SAND-MOpt. We conduct the evaluation on the same 12
programs and compare them against MOpt-Native, MOpt-
ASan/UBSan, and MOpt-MSan.

Figure 13a shows the normalized throughput of each
fuzzer averaged across all programs. The results show that
SAND-MOpt has achieved 2.2x and 16x higher throughput

Average0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Th
ro

ug
hp

ut

MOpt-Native
MOpt+ASan/UBSan
MOpt+MSan
SAND-MOpt

(a) Average throughput.

MOpt

MOpt-ASan/UBSan

MOpt-MSan

SAND-MOpt

1

36

20
16

16

4
8

51

(b) Unique bugs breakdown.

Figure 13: The overall performance of SAND-MOpt.

than MOpt-ASan/UBSan and MOpt-MSan, respectively. We
also count the number of unique bugs found by each fuzzer
in Figure 13b. With no surprise, SAND-MOpt still discov-
ers many more bugs than any other fuzzers. In particular,
SAND-MOpt covers 36 extra bugs that are not found by
any other fuzzers. These extraordinary results highlight the
effectiveness and general applicability of SAND.

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Introduction
	Observation and Illustration
	High Overhead of Sanitizers
	Rareness of Bug-triggering Inputs
	Illustrative Examples

	Our Approach
	Preliminary: Execution Path and its Proxy
	Sanitization-decoupled Fuzzing
	Implementation

	Evaluation
	Experimental Setup
	Effectiveness of Execution Pattern
	Bug-Finding Capability
	Fuzzing Throughput
	Code Coverage
	Hash in Sand

	Discussion
	Related work
	Conclusion
	References
	Appendix: General Applicability

