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We introduce a novel approach for testing optimizing compilers with code from real-world applications.

The main idea is to construct well-formed programs by fusing multiple code snippets from various real-

world projects. The key insight is backed by the fact that the large volume of real-world code exercises rich

syntactical and semantic language features, which current engineering-intensive approaches like random

program generators are hard to fully support. To construct well-formed programs from real-world code, our

approach works by (1) extracting real-world code at the granularity of function, (2) injecting function calls

into seed programs, and (3) leveraging dynamic execution information to maintain the semantics and build

complex data dependencies between injected functions and the seed program.

We implement our idea in a tool, Creal, to test C compilers. In a nine-month testing period, we have reported

132 bugs to GCC and LLVM, two of the most popular and well-tested C compilers. At the time of writing,

121 of them have been confirmed as unknown bugs, and 97 of them have been fixed. Most of these bugs

were miscompilations, and many were recognized as long-latent and critical. Our evaluation results evidently

demonstrate the significant advantage of using real-world code to stress-test compilers. We believe this idea

will benefit the general compiler testing direction and will be directly applicable to other compilers.

1 INTRODUCTION
Compilers are among the most fundamental and critical components in the software ecosystem.

They should not crash and are expected to faithfully translate valid input programs. However, com-

piler bugs can cause crashes or even worse, miscompilations. Decades of research and engineering

efforts have been put into improving compilers’ reliability [Chen et al. 2020]. Random compiler

testing has proven to be effective in discovering compiler bugs. One noticeable contribution is

Csmith [Yang et al. 2011], a pioneering C program generator. By generating random programs,

Csmith has helped discover many bugs in C compilers. A more recent generator YARPGen [Livinskii

et al. 2020] and the follow-up YARPGen v.2 [Livinskii et al. 2023], featuring a set of generation

policies, target at scalar and loop optimizations and have successfully identified many bugs missed

by previous generators. In addition to generator-based tools, mutation-based compiler testing tech-

niques are also effective in finding compiler bugs. The most representative approach is equivalence
modulo inputs (EMI) [Le et al. 2014]. EMI techniques [Le et al. 2015; Sun et al. 2016] mutate a

program by removing or inserting random code while maintaining the input/output behaviors

of the program. This line of research has achieved a surprising result: discovering a considerable

number of additional bugs in mature and well-established compilers, such as GCC and LLVM.

Limitations. All aforementioned generation- and mutation-based approaches introduce a funda-

mental limitation: They are unable to produce programs with features beyond the underlying rules.

These approaches rely on predefined syntactical and semantic rules in constructing programs. For

example, to avoid undefined behavior, Csmith resorts to heavy-handed safe wrappers, which limits
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1 src = data + offsetp;
2 do {
3 b = *src++;
4 ret |= ((b & 0x7f) << shift);
5 (*offsetp)++;
6 shift += 7;
7 } while ((b & 0x80) != 0);

(a) A loop from the FreeBSD project.

1 for (p_1 = 0; p_1 <= 6; p_1 -= 8) {
2 int32_t l_6 = 0x2E2B9C6;
3 l_3 ^= (p_1 > (l_5[0] ^ l_6));
4 } // Csmith

1 for(i0=var1;i0 < arr2[0]%var3; i0+=1){
2 var4 ^= arr5[i6] << (var3+1);
3 } // YarpGen v.2

(b) Loops taken from Csmith and YARPGen v.2.

Fig. 1. Loops from real-world project, Csmith, and YARPGen v.2.

the expressiveness of the generated programs [Even-Mendoza et al. 2021]; to guarantee termination,

Csmith only generates constant-bounded loops, meaning that all loop conditions are constant;

EMI-based mutators [Le et al. 2015; Sun et al. 2016] augment generator-produced programs with

random code and thus inherit the limitations. Due to these constraints, experience shows that

all random program generators will eventually saturate and find very few bugs [Amalfitano et al.

2015]. Extending the scope of current approaches by integrating more rules is theoretically feasible

but is challenging and labor-intensive in practice.

Our idea. This paper proposes using code from real-world projects for compiler testing. The

core idea is first to extract code snippets from real-world projects and then inject them into a

seed program to enrich its code features. Our key observation is that real-world code exercises a

diverse range of syntactical and semantic code features, which are often hard for random program

generators or mutators to support. Figure 1a shows a loop from FreeBSD
1
, a UNIX-like OS written

in C. This code contains an unbounded while loop, where the loop index “b” is modifiable at both

lines 3 and 5. This code helped us find a latent miscompilation bug in LLVM. Figure 1b shows

two common loops from Csmith and YARPGen v.2, respectively. The first loop is from Csmith.

It is constant-bounded, which is true for all Csmith-produced loops. The second loop is from

YARPGen v.2 and has more complex loop indexes such as i0 and arr2. However, unlike Figure 1a,
all these variables are not modifiable in the loop body. Generators need to capture code semantics

at generation time to generate well-formed programs, which is hard for complex loops.

One may think that why can’t we use real-world code directly for compiler testing? First,
real-world code is unlikely to trigger observable compiler issues directly. Marcozzi et al. [Marcozzi

et al. 2019] studied the impact of miscompilation bugs with 10 million lines of C/C++ code from

309 Debian packages. They run standard test suites from these packages to identify possible

miscompilation bugs. Among dozens of studied miscompilation bugs, only one test failure was

observed during a five-month experiment. Such inefficiency is clearly not suitable for stress-testing

compilers. Second, real-world code often contains bugs, e.g., undefined behavior. Input programs

for compiler testing need to be well-formed. Otherwise, even if a failure, such as incorrect output,

is observed, we cannot differentiate whether or not it is caused by undefined behavior or compiler

bugs. Numerous efforts [Wang et al. 2013; Zhu et al. 2022] in academia and industry have been

made to detect and remove undefined behavior from real-world code, yet they still remain unsolved.

Last, reducing a project into a simple enough test case suitable for a bug report is challenging.

Non-trivial open-source projects typically have a large code base. Reduction is necessary for

compiler developers to diagnose and fix bugs. EMI [Le et al. 2014] reported that although they

found inconsistent outputs from real-world code, they were not able to reduce them.

1
https://github.com/freebsd/freebsd-src/blob/main/contrib/elftoolchain/libdwarf/libdwarf_rw.c
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Our approach. To use real-world code, we begin by extracting well-formed functions from real-

world projects. Next, we inject function calls into seed programs to establish vigorous connections

between real-world functions and the seed program. Our code injection technique ensures that

all produced programs are well-formed. There are three main benefits of using real-world code at

the function level: (1) most compiler optimizations work at the function level [GCC 2023; LLVM

2023b], ensuring real-world functions can already exercise rich features, (2) it is relatively painless

to guarantee the validity of extracted functions in terms of undefined behavior, and (3) it requires

moderate changes to the seed program, making it uncomplicated to maintain the validity of the

resulting program. An alternative technique is to inject code chunks directly into seed programs.

However, this requires extensive modifications to both the extracted real-world code and the seed

programs, which can easily result in invalid programs. Nonetheless, we consider this orthogonal

approach to be an interesting future work. Our evaluation will show that using real-world functions

as building blocks can effectively explore various code features.

We implement our idea in a tool named Creal. Since our approach is data-hungry, we need a

diverse range of functions from real-world projects to fuel Creal. We develop a function extractor,

with which we construct a function database containing more than 51,000 real-world functions

from 146 popular open-source projects, such as Git, Linux Kernel, OpenSSL, to name a few. With

this database, we evaluate Creal by stress-testing the latest versions of C compilers, namely GCC

and LLVM. In a nine-month testing period, our tool identified 132 compiler bugs. Of those, 121

were confirmed and 97 were fixed by the compiler developers. It is worth noting that most of the

bugs were miscompilations, which are the most harmful and difficult-to-detect compiler bugs.

In conclusion, we make the following contributions:

• We propose injecting real-world code into seed programs to create diverse, well-formed pro-

grams for testing compilers.

• We develop Creal to implement our idea by injecting real-world functions into seed programs.

To fuel Creal, we build a function database containing over 51,000 real-world functions, and

• We conduct a nine-month extensive evaluation of Creal to demonstrate its effectiveness — 132

unique bugs are discovered in widely used production C compilers: GCC and LLVM.

We believe our idea of injecting real-world code into synthetic programs offers an exciting and

promising technical direction for testing C compiler implementations and beyond.

2 ILLUSTRATIVE EXAMPLES
We use a concrete GCC miscompilation bug to illustrate (1) what features in the injected real-

world function trigger the compiler bug, (2) why current generators and mutators cannot trigger this

bug, and (3) how Creal injects a real-world function into the seed program. Since Csmith [Yang et al.

2011] is by far themost powerful andwidely used generator for producing generic C programs [Chen

et al. 2020; Sun et al. 2016], in this paper, we use Csmith as the seed program generator. To facilitate

our presentation, we only show reduced and simplified programs.

Figure 2c shows a program generated by Creal that triggered a long-latent GCC miscompilation

bug. This program is produced by injecting the real-world function print_dec shown in Figure 2a

into the seed program shown in Figure 2b.

➤ Q1: What features in the real-world function are essential to trigger the bug?
The function “print_dec” is extracted from the FreeBSD project 2

. Its definition can be found in Fig-

ure 2a. This function converts a decimal integer “value” into a string and returns its number of digits

as i. Now, let us focus on the program in Figure 2c. The function call “print_dec(h, c+74, d+48)”

2
https://github.com/freebsd/freebsd-src/blob/main/contrib/unbound/compat/snprintf.c
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1 // Input: [*, 75, 48] => Output: 2
2 int print_dec(
3 char* buf, int max, unsigned int value){
4 int i = 0;
5 if (value == 0) {
6 if (max > 0) {
7 buf[0] = '0';
8 i = 1;
9 }
10 } else while(value && i < max) {
11 buf[i++] = '0' + value % 10;
12 value /= 10;
13 }
14 return i;
15 }

(a) A real-world function.

1 int a, b;
2 int main() {
3 int c = 1, d = 0;
4 long j[2];
5 for (a = 0; a < 2; a++) {
6 {
7 /* Profile: a={0,1}, b={0,1}, c={1}, d={0}*/
8 b = d + a;
9 }
10 j[b] = 1;
11 }
12 printf("%d\n", j[0]);
13 }

(b) The seed program.

1 int a, b;
2

3 /* A function extracted from the FreeBSD project.*/
4 int print_dec(
5 char* buf, int max, unsigned int value){
6 int i = 0;
7 if (value == 0) {
8 if (max > 0) {
9 buf[0] = '0';
10 i = 1;
11 }
12 } else while(value && i < max) {
13 buf[i++] = '0' + value % 10;
14 value /= 10;
15 }
16 return i;
17 }
18

19 int main() {
20 int c = 1, d = 0;
21 long j[2];
22 for (a = 0; a < 2; a++) {
23 {

24 char h[2] = {0, 0};

25 // replace ``d'' with call to print_dec

26 b = print_dec(h, c+74, d+48)-2 + a;

27 }
28 j[b] = 1;
29 }
30 printf("%d\n", j[0]);
31 }

(c) Our generated new program.

Fig. 2. The program in (c) triggered a latent miscompilation bug in GCC. It is generated by replacing the
variable d from line 8 in (b) with a carefully designed function call to (a). The synthesized function call is
highlighted in gray in (c).

in line 26 should always return 2 because c+74=75, which is a 2-digit number. Thus, b = a. The
correct output from this program should be 1 as j[0] is set to 1 in line 28. The executable compiled

by GCC at -O3, however, outputs 13368. The root cause is that when GCC unrolls the “while”
loop in lines 12-15, the complex control flow leads to incorrect memory partition for arrays j and

h. Consequently, values in j are polluted by h and become incorrect. The complex while loop in

“print_dec” is essential to trigger the bug — removing any expression such as “i<max” (line 12),
“value%10” (line 13), or “buf[i++]” (line 13) from the loop cannot trigger the bug.

➤ Q2: Why current generator- and mutator-produced programs cannot trigger this bug?
As discussed above, the complex “while” loop is the key to triggering the bug. However, as has

discussed before, generators like Csmith can only generate constant-bounded “for” loops such as

for (i = 0; i < 2; i++) {
...

}

for (i = 0; i != 2; i-=v) {
...

}

Csmith is conservative in generating loops to guarantee termination and avoid undefined behavior.

All the loops are bounded by constant values, and loop indexes are only modified in the “increment”

parts of for loops. The while loop from the real-world function in Figure 2a, on the other hand, has

more features: (1) it has two loop indexes, (2) both loop indexes are modified in the loop body, and

(3) the loop is not constant-bounded. The Csmith implementation does not support these features.

Consequently, mutators relying on generators cannot support these features, either.
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➤ Q3: How does our approach generate the new program?
Our approach aims to inject real-world function calls into a seed program. Real-world functions

need to be available in the first place. We design a function extractor to extract and preprocess

functions from real-world projects. Assume that “print_dec()” is the only function we collected.

After collection, we generate a driver function to capture valid input/output pairs for the function.

One possible driver function for print_dec() is

int main () {
char arr[2];
int ret = print_dec(arr, 75, 48);
print("%d\n", ret);

}

Executing the driver function can tell us that when calling with “print_dec(arr, 75, 48)” where
arr is pointing to a sufficiently large memory, the return value of “print_dec()” is “2”. This I/O
information will be added along with the static function information into our function database.

For example, the first line in Figure 2a indicates one input/output pair for the function. We apply

extensive analysis such as sanitizers [Team 2023] to guarantee that there is no undefined behavior

when calling the function with the cached inputs. More details will be included in Section 4.2.

The resulting program should be well-formed. To this end, we construct an equivalence modulo
inputs (EMI) variant when injecting calls, which means the new program has an input/output behav-

ior identical to the seed program. For example, the injected call “print_dec(h, c+74, d+48)-2” is
always evaluated to 0 at run-time, which is identical to the replaced variable “d”. This equivalence
guarantees that the resulting new program is also well-formed as long as both the seed program

and the injected function are well-formed. Specifically, given the seed program in Figure 2b, Creal

works as follows:

Step 1. Seed analysis: identify variables or constants after which function calls can be injected.

For example, the variables “d” and “a” from line 8 in Figure 2b are valid candidates. Other

valid expressions include “0” and “2” in line 5, “b” and “1” in line 10, etc.
Step 2. Seed profiling: instrument and profile the program to collect values of in-scope variables.

Suppose that only variable “d” in line 8 is matched. Since “a,b,c,d” are in-scope variables in
line 8, we collect values of variables a,b,c,d in line 8 with our instrumentation. As indicated

by line 7, the profile includes all run-time values of these variables: both “a” and “b” have
multiple values, while “c” and “d” have single values.

Step 3. Function call synthesis: synthesize a function call to the real-world function. Since “d”
is selected, our target is to synthesize a function call that can replace “d” while maintain-

ing the execution semantics. We then (i) Choose a function from the database. We assume

“print_dec()” is chosen. (ii) Synthesize the input parameters to the chosen function. All input
parameters should be identical to the cached input so that we know the return value from

the function call during synthesis. Because the first parameter of “print_dec()” is a pointer,
we place “char h[2]” ahead of the current statement as shown in line 24 in Figure 2c and

use “h” as the first parameter. We do not use any pointer from the seed program to avoid

modification to the seed program’s memory state. Because the second and last inputs are 75

and 48, we can simply use “print_dec(h,75,48)” as the function call. In order to build data

dependency between the seed program and the injected function, we use in-scope variables

as input parameters. For example, since “c=1” and “d=0”, we use “print_dec(h,c+74,d+48)”
as the function call, which returns the same value as “print_dec(h,75,48)”. (iii) Return
value compensation: compensate the return value of the function call to cancel its effect.

Since “print_dec()” returns 2, we append “-2” after the function call. The final synthesized

5
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expression is “print_dec(h, c+74, d+48)-2”, which is evaluated to 0=d and thus does not

modify the run-time semantics of the seed program.

The final generated program is shown in Figure 2c. The injected function call builds dependency

between the seed program and the real-world function, bringing the rich features from the real-

world function into the seed program. In practice, Creal will insert more than one function call to

enhance the expressiveness of the final program further.

3 APPROACH
This section presents our real-world function injection approach. Section 3.1 introduces basic

concepts about the constructed function database. Section 3.2 describes the high-level algorithmic

sketch of our approach. Sections 3.3 to 3.5 detail the main steps in the sketch. Section 3.6 presents

our implementation of Creal.

3.1 Function Database
Our approach is driven by real-world functions. We design and build a function extractor that can

automatically extracting, transforming, and profiling functions from source code files. We defer

the technical details of function database construction to Section 4. Let us assume a constructed

function database D𝐹 is available. For each function 𝐹𝑖 ∈ D𝐹 , 𝐹𝑖 has the following key properties:

(1) 𝐹𝑖 takes only numeric input types and returns a numeric value.

(2) 𝐹𝑖 does not contain any other function calls.

(3) 𝐹𝑖 is pure, meaning that 𝐹𝑖 has deterministic outputs and has no side effects.

The first property allows us to avoid passing pointers from the seed program as input parameters,

preventing uncontrolled modifications to the seed program’s memory state. For the illustrative

function “print_dec()” in Figure 2a that takes a pointer as input, we design a transformation that

transforms it into a numeric input-only function. Technical details will be clarified in Section 4.1.

To simplify our presentation, we will always assume that all functions take only numeric input types.
The second property indicates that each function can be compiled and executed independently.

The last property allows us to fully model a function’s semantics by its input/output pairs.

3.2 Algorithmic Sketch
Our high-level idea is to substitute an expression in a seed program with a function call to a

real-world function. The resulting program should have the same semantics as the seed program.

Algorithm 1 presents the general process of generating a new program. Given a seed program P
and an input I to the program, our generator works as follows:

Step 1. Expression matching (line 2): find all expressions in the seed program P that satisfy a set

of predefined criteria (see Section 3.3). These expressions will later be replaced with function

calls in a certain probability.

Step 2. Program profiling (line 3): instrument and run the program P on input I to collect the

execution profile p̂rof , which contains all the needed run-time information at the program

location of each matched expression. (see Section 3.4)

Step 3. Skipping an expression (line 6): for the matched expressions, we do not aggressively sub-

stitute all of them with function calls. First, we query the execution profile to see if 𝑒𝑥𝑝𝑟 is

alive, i.e., exists in the live rather than dead code region. Then, for live expressions, we do

substitution in a certain probability. The function FlipCoin() returns either true or false.

6
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Algorithm 1: Program generation

1 procedure Generate(Seed Program P, Input I, Function Database D𝐹 ):
// find all matched expressions 𝑒𝑥𝑝𝑟

2 E ← GetMatchedExpr(P)
// profiling the program at all program locations of E

3 p̂rof ← Profile(P, I, E)
4 𝐹_𝑙𝑖𝑠𝑡 ← [ ]
5 foreach 𝑒𝑥𝑝𝑟 ∈ E do

// decide if this expression needs to be substituted

6 if IsAlive(𝑒𝑥𝑝𝑟, p̂rof ) and FlipCoin() then
// select a function from the database

7 𝐹 ← SelectFunction(D𝐹 )
// synthesize the function call

8 𝑒𝑥𝑝𝑟 ′ ← SynFuncCall(𝑒𝑥𝑝𝑟, 𝐹, p̂rof )
// substitute the original expression with the function all

9 P ← InsertFunc(P, 𝑒𝑥𝑝𝑟, 𝑒𝑥𝑝𝑟 ′, 𝐹 )
10 if 𝐹 ∉ 𝐹_𝑙𝑖𝑠𝑡 then

// remember all used 𝐹

11 𝐹_𝑙𝑖𝑠𝑡.append(𝐹)

// insert function declarations

12 InsertFuncDecl(P, 𝐹_𝑙𝑖𝑠𝑡)
13 return P

The probability for FlipCoin() to return true can be configured in our Creal implementa-

tion. The reason why we skip dead code regions is that previous work [Le et al. 2015; Sun

et al. 2016] has shown that mutating on live regions is more likely to exercise interesting

compiler optimizations and trigger bugs.

Step 4. Function selection and function call synthesis (lines 7-8): a function 𝐹 ∈ D𝐹 is randomly

selected. With the execution profile p̂rof , we know the evaluation results of 𝑒𝑥𝑝𝑟 and a

set of in-scope variables. The SynFuncCall procedure will then synthesize a function call

expression that is evaluated to the same value as 𝑒𝑥𝑝𝑟 . (see Section 3.5)

Step 5. Function call insertion (lines 9-11): the new expression 𝑒𝑥𝑝𝑟 ′ with a function call will replace
the original expression 𝑒𝑥𝑝𝑟 in P. This function will also be appended into 𝐹_𝑙𝑖𝑠𝑡 .

Step 6. Function declaration insertion (line 12): after the iteration is over, insert the declarations of

all used functions to the beginning of P, making it to be compilable and executable.

As indicated in the algorithm, the generation happens iteratively over all matched live expressions.

The resulting program contains more than one real-world function call. For the rest of this section,

we will introduce in detail the three key steps, i.e., expression matching, program profiling, and
function call synthesis.

7
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𝑆 ::= 𝐸 ⊕ ⟨𝑒 ⟩ | ⟨𝑒 ⟩ ⊕ 𝐸 | 𝑆 ′ ⊙ 𝐸

𝐸 ::= ⟨𝑐 ⟩ | ⟨𝑣⟩ | ∗ ⟨𝑣⟩ | ⟨𝑣⟩ [ ⟨𝑒 ⟩ ]
⟨𝑐 ⟩ ::= constants

⟨𝑣⟩ ::= variables

⟨𝑒 ⟩ ::= all expressions in C

⊕ ::= binary operators, e.g., +| − | ∗ |%, etc.
⊙ ::= assignment operators,e.g., = |+ = |∗ =, etc.
𝑆 ′ ::= left operand of ⊙ (ignored)

Source code
a + b

(a + b) - c

*a + b

a = b + 1

a += b + c[1]

Matched expressions
a, b

a, b, c

*a, b

b, 1

b, c[1]

Fig. 3. Syntax rules for matching expressions E appearing in S. Note that, E is of numeric type, such as int.

3.3 Expression Matching — GetMatchedExpr(·)
Given a seed program P, we statically scan P to find all expressions where function calls can be

injected. Figure 3 gives the syntax rules used for matching target expressions and a set of matched

expression examples. There are two main criteria:

• The expression has to be non-left, i.e., not on the left-hand side of an assignment expression.

This criterion ensures the syntactic validness after we inject a function call. For instance,

replacing “a” in “a = b + 1” with a function call violates the C language specification.

• The expression has a numeric type. Since all functions in the database have numeric

input/output types, we match numeric expressions only for type compatibility.

A valid expression can contain multiple matched expressions. For example, “(a+b)-1” contains
three expressions that satisfy our criteria, namely “a”, “b”, and “1”. Specifically, we match three types

of expressions, i.e., (1) constants, (2) variables having numeric types, and (3) pointer dereferences

or array accesses having numeric types such as “*a” or “c[1]” of type int.

3.4 Program Profiling — Profile(·)
Program profiling collects the run-time variable values at target program locations. The target

program locations L are a set of lines that contain at least one matched expression. Let us denote

all matched expressions at the program location 𝑙 as E𝑙 and all in-scope variables at 𝑙 asV𝑙 . It is

clear that all variables from E𝑙 ∈ V𝑙 . With this notation, we define the execution profile as follows:

Definition 1 (Execution Profile). Given a program P, an input I, and program locations L. By
running P on the input I, the execution profile p̂rof records the values of expressions inV𝑙 at each

program location 𝑙 ∈ L.

Figure 4 shows the execution profile of an example program. In this program, the target program

locations are L = {5, 6, 8} because only these three lines contain matched expressions. In line 5, the

variable b and constant 1 are matched expressions; variables a, b and g are in the variable setV5 as

they are all in-scope. In line 8, there is an extra in-scope variable c. The execution profile, as shown

in the bottom right of the figure, records all observed run-time values of variables in eachV𝑖 .

For a non-trivial seed program P, the number of in-scope variablesV𝑖 at each program location

is typically large. Recording all of their values is thus costly. Since only a part of variables from

V𝑖 will be used for synthesis, to reduce the profiling cost, our implementation of Creal randomly

selects a small yet sufficient subset of in-scope variables in eachV𝑖 . To facilitate easy access to the

execution profile p̂rof , we design the following queries:

8
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1 int g=4;
2 int main() {
3 int a = 0, b = 1;
4 for (;;) {
5 a += b + 1;
6 if (a > g) {
7 int c = 3;
8 g = a + c;
9 break;
10 }
11 }
12 }

Program locations: L = {5, 6, 8}

Matched expressions: E5 = {b, 1}

E6 = {a, g}

E8 = {a, c}

Execution profile:

V5 : a = {0, 2, 4}, b = {1}, g = {4}

V6 : a = {2, 4}, b = {1}, g = {4}

V8 : a = {4}, b = {1}, c = {3}, g = {4}

Fig. 4. The program on the left is the seed program. L is the program
locations where we have matched expressions E. The execution profile
shows the run-time values of in-scope variables at each program location.

⟨𝑒 ⟩ ::= ⟨𝑐 ⟩ | ⟨𝑣⟩ | (⟨𝑒 ⟩) | ⊖ ⟨𝑒 ⟩
| ⟨𝑒 ⟩ ⊕ ⟨𝑒 ⟩ | ⟨𝐹 ⟩

⟨𝑐 ⟩ ::= constants

⟨𝑣⟩ ::= variables

⟨𝐹 ⟩ ::= function call

⊖ ::= unary operators, e.g., ! | ∼
⊕ ::= binary operators, e.g., +| ∗ |%

Fig. 5. BNF grammar for expres-
sion synthesis.

Algorithm 2: Function call expression synthesis.

1 procedure SynFuncCall(Program Location 𝑙 , Profile p̂rof , Database D𝐹 , Target Value val):
// randomly select a function from the database and get its input set

2 𝐹𝑖 ← SelectFunction(D𝐹 )
3 [inp

1
, inp

2
, · · · , inp𝑚 ]← 𝐹𝑖.input

// initialize the function call template

4 FC = “ 𝐹𝑖 .name (<para>1, <para>2, · · · , <para>𝑚)”

// iteratively synthesize the function parameters

5 foreach 𝑘 ∈ [1 . . .𝑚] do
6 𝑉 ← GetStableVariable(p̂rof , 𝑙)

// sythesize expression 𝑝𝑎𝑟𝑎 using 𝑉 such that [[𝑝𝑎𝑟𝑎]] = inp𝑘
7 𝑝𝑎𝑟𝑎← SynthesizeExpression (𝑉 , inp𝑘 )
8 FC.Substitute(<para>𝑘, para)

9 𝑉 ′ ← GetStableVariable(p̂rof , 𝑙)

// synthesize expression 𝑒𝑥𝑝𝑟 ′ using 𝑉 ′ and FC such that [[𝑒𝑥𝑝𝑟 ′]] = val

10 𝑒𝑥𝑝𝑟 ′ ← SynthesizeExpression (𝑉 ′ ∪ FC, val)
11 return 𝑒𝑥𝑝𝑟 ′

• GetStableVariable(p̂rof , 𝑙): returns all in-scope variables where the variable has only one
run-time value. For example, GetStableVariable(p̂rof , 5) returns only {b, g} but not a.
• GetVariableValue(p̂rof , 𝑙 , 𝑣): returns the run-time value(s) of variable 𝑣 at location 𝑙 , e.g.,
GetVariableValue(p̂rof , 5, b) returns {1}.

3.5 Function Call Synthesis — SynFuncCall(·) & InsertFunc(·)
Given a selected expression 𝑒𝑥𝑝𝑟 , we synthesize a new expression 𝑒𝑥𝑝𝑟 ′, such that

[[𝑒𝑥𝑝𝑟 ′]] = [[𝑒𝑥𝑝𝑟 ]]

where [[𝑥]] denotes the run-time value of expression 𝑥 . The above equation indicates the run-

time values of 𝑒𝑥𝑝𝑟 and 𝑒𝑥𝑝𝑟 ′ are identical. Let P[𝑒𝑥𝑝𝑟/𝑒𝑥𝑝𝑟 ′] be a program formed by replacing

9
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𝑒𝑥𝑝𝑟 with 𝑒𝑥𝑝𝑟 ′ at the same source location. The run-time value equivalence of 𝑒𝑥𝑝𝑟 and 𝑒𝑥𝑝𝑟 ′

guarantees that (1) P[𝑒𝑥𝑝𝑟/𝑒𝑥𝑝𝑟 ′] has the same output as P, and (2) if both P and 𝑒𝑥𝑝𝑟 ′ are
well-formed, e.g., free of undefined behavior, P[𝑒𝑥𝑝𝑟/𝑒𝑥𝑝𝑟 ′] is also a well-formed program.

There are two cases for 𝑒𝑥𝑝𝑟 : (1) 𝑒𝑥𝑝𝑟 is stable, meaning that [[𝑒𝑥𝑝𝑟 ]] is a single value val,

e.g., variable “b” at line 5 in Figure 4. In this case, we require [[𝑒𝑥𝑝𝑟 ′]] = val. (2) 𝑒𝑥𝑝𝑟 is unstable,
meaning that [[𝑒𝑥𝑝𝑟 ]] has different values at run-time, e.g., variable “a” at line 5 in Figure 4. In this

case, we synthesize the new expression as “𝑒𝑥𝑝𝑟 ′ = 𝑒𝑥𝑝𝑟 +�𝑒𝑥𝑝𝑟”, where [[�𝑒𝑥𝑝𝑟 ]] = 0. This ensures

that [[𝑒𝑥𝑝𝑟 ′]] = [[𝑒𝑥𝑝𝑟 ]]. The second case can be viewed as the first case by treating �𝑒𝑥𝑝𝑟 as the
target expression 𝑒𝑥𝑝𝑟 ′. Without loss of generality, our presentation always assumes that 𝑒𝑥𝑝𝑟 is

stable, and our target is to synthesize a new expression 𝑒𝑥𝑝𝑟 ′ that evaluates to [[𝑒𝑥𝑝𝑟 ]] = val.
Algorithm 2 shows the general procedure of synthesizing a new expression. It first randomly

selects a function item 𝐹𝑖 from the constructed function databaseD𝐹 and obtains the function input

set (lines 2-3). Note that all x such as inp
1
and val are concrete numeric values, e.g., “0”, “2”, etc.

Then, it initializes a function call template as FC (line 4). This template is of string format and has a

set of placeholders for input arguments, i.e., <para>1, <para>2, · · · , and <para>𝑚 . Next, it tries to
replace all these placeholders with concrete expressions. For each of the parameter placeholder

para𝑘 , it obtains stable variables 𝑉 from the execution profile (line 6). With the grammar shown in

Figure 5, it uses𝑉 and synthesizes an expression 𝑝𝑎𝑟𝑎 that evaluates to inp𝑘 (line 7). The parameter

placeholder <para>𝑘 is then substituted by the synthesized parameter expression 𝑝𝑎𝑟𝑎 (line 8).

After the for loop, the function call to “𝐹𝑖 .name(. . . )” is evaluated to 𝐹𝑖 .output. Finally, with the

grammar shown in Figure 5, it synthesizes an expression with a set of stable variables 𝑉 ′ and the

synthesized function call FC. This new expression 𝑒𝑥𝑝𝑟 ′ is now evaluated to the target value val.

Example. We use an example to illustrate the algorithm. Let us assume the target value is val = 5:

• In line 2, suppose the selected function is “int real(int)”, which takes an integer as input

and returns an integer value.

• In line 3, suppose the single input is inp
1
= 2 and the function return is 1.

• In line 4, the template is then “real(<para>1)”.

• In lines 6-7, suppose the stable variables 𝑉 is { 𝑏 } and “𝑏” has single value 1. One instance of

the synthesized expression can be “𝑏 + 1”, which evaluates to 2 = inp
1
.

• In line 8, the synthesized input expression is then “𝑏+1” and the function call FC is “real(𝑏+1)”.
• In line 10, suppose the stable variables 𝑉 ′ is { 𝑔 } and “𝑔” has single value 4. One instance of the

synthesized expression can be “(−real(𝑏 + 1) ∗ 2) + 𝑔 ∗ 2 − 1” because
(−real(𝑏 + 1) ∗ 2) + 𝑔 ∗ 2 − 1 = (−1 ∗ 2) + 𝑔 ∗ 2 − 1

= (−1 ∗ 2) + 4 ∗ 2 − 1

= 5 = val

The synthesized expression 𝑒𝑥𝑝𝑟 ′ fuses the function call with variables in the seed program.

This fusion builds rich dependencies between the seed program and the inserted functions. The

original expression 𝑒𝑥𝑝𝑟 is then replaced by 𝑒𝑥𝑝𝑟 ′.

3.6 Implementation
We implemented the proposed program generator in Creal. Taking a seed program P and a function

database D𝐹 as inputs, Creal utilizes Clang’s Libtooling [LLVM 2023a] to instrument profiling

code into P and collects its execution profile. When generating a mutant, Creal replaces multiple

expressions in the seed program with different synthesized function call expressions.

10
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Fig. 6. Step-by-step transform an invalid function into a pure function.

Type conversion. In the above presentation, we assumed that there is only one numeric type in

the program. In practice, the C language supports many types such as int, char, and unsigned.
When an operation happens between values of different types, the compiler will do implicit type

conversions. For example, the evaluation results of “𝑎 +𝑏” are different when “𝑎” has different types:

int 𝑎 = 0; int 𝑏 = −1; ⇒ 𝑎 + 𝑏 = −1 (int)

unsigned 𝑎 = 0; int 𝑏 = −1; ⇒ 𝑎 + 𝑏 = 4294967295 (unsigned)

For the second case, 𝑏 is cast into unsigned and thus its value becomes 4294967295 (the maximum

value for a 32-bit unsigned integer). In Creal, we carefully evaluate the expression values when

type conversion is possible. We also add explicit casts to make sure the type of 𝑒𝑥𝑝𝑟 ′ is the same as

the original expression 𝑒𝑥𝑝𝑟 .

Avoiding undefined behavior.When synthesizing expressions in Creal, it is important to guaran-

tee that the synthesized expressions are well-formed. Since our expressions involve only arithmetic

operations, we only need to avoid integer overflow. This can be easily achieved because we know

the concrete evaluation values of all involved variables.

Generated programs. Our approach is general and can in principle take programs from any

generators as input. In our implementation, we use Csmith as default generator to generate seed

programs. In this case, every seed program is in a single source file. After injecting function calls,

Creal includes function definitions for all used functions in the source file. The generated program

by Creal is thus a single source file, as exemplified in Figure 2c.

4 CONSTRUCTING FUNCTION DATABASE
This section presents details about constructing a function database to fuel our approach.

4.1 Extracting and Transforming Functions
We design a function extractor to obtain functions from source code files. We utilize Clang’s

Libtooling [LLVM 2023a] for implementation. The extractor finds all function definitions in a

pre-processed input program, e.g., programs processed by “clang -E”. The principal selection
criteria are (a) the function only involves primitive types, and (b) the function should be pure, i.e.,
with deterministic outputs and no side effects. The first requirement allows us to compile and

execute functions without dealing with user-defined types. The second requirement allows us to

model the execution of a function purely by its I/O behavior. In the context of C, this means
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1 #include <stdio.h>
2

3 /* Placeholder for function definition */
4 F.def;
5

6

7 int main() {
8 /* randomly select values for arguments */
9 F.arg_type[0] p1 = RAND();
10 F.arg_type[1] p2 = RAND();
11 ...
12 /* invoke the function */
13 F.ret_type ret = F.name(p1, p2, ...);
14

15 /* output the IO */
16 LOG(p1); LOG(p2); ...;
17 LOG(ret);
18 }

(a) Driver template.

1 #include <stdio.h>
2 /* function definition */
3 int add(char a, int b) {
4 int r = a + b;
5 return r;
6 }
7 int main() {
8 /* randomly select values for arguments*/
9 char p1 = RAND(char);
10 int p2 = RAND(int);
11

12 /* invoke the function */
13 int ret = add(p1, p2);
14

15 /* output the IO */
16 LOG(p1); LOG(p2);
17 LOG(ret);
18 }

(b) The driver function for “add”

Fig. 7. Template for driver functions and an example driver function.

(1) The function does not modify its arguments. Some functions take pointers as arguments, the

memory locations pointed to by which can be modified after invoking the function. Instead of

discarding such functions, we synthesize proxy functions for them to avoid possible modifica-

tions to arguments. For example, Figure 6 (1) shows how we use a proxy function foo_proxy
to hide the pointer parameter in the original function foo. Note that the proxy function also

dereferences the return pointer to make it also a primitive type.

(2) The function does not call other functions that have side effects. Real-world functions may call

other functions. Analyzing other functions to avoid side effects is theoretically feasible but

would complicate our implementation and make it fragile. Instead, we choose to remove all

other function calls from a function definition. To maintain syntactic correctness, we replace

each call with a randomly chosen yet type-compatible value. For instance, Figure 6(2) shows

that the extractor replaces the function call “bar(g, c++)” with an integer value “1”.

(3) The function does not modify global or static variables. The value of global or static variables
may be different when calling the same function multiple times. Such side effects break our

intention of modeling a function by its I/O behaviors. Our extractor will remove all “static”

keywords from a function definition and then lower all global variables into local variables. For

example, the extractor changes variables g and c as shown in Figure 6(3).

Since we utilize a function’s I/O for program generation, we also exclude functions that take no

inputs or return void. With the designed function extractor, we can extract a set of functions from

real-world projects. We denote the constructed function database as D𝐹 = {𝐹1, 𝐹2, · · · , 𝐹𝑛}, where
each 𝐹𝑖 contains the static information regarding the function and has the following information:

• 𝐹𝑖 .name: the unique name of the function in the database, e.g., “foo_proxy” in Figure 6.

• 𝐹𝑖 .arg_type: the types of each argument, e.g., [ “char” ].
• 𝐹𝑖 .ret_type: the return type, e.g., “int”.
• 𝐹𝑖 .def: the function definition, e.g., “int* foo(...){...} int foo_proxy(...){...}”.

4.2 Constructing Function Database with I/O
Caching the input/output (I/O) behaviors of a function can help us precisely synthesize a function

call and avoid ill-formed functions prior to synthesis. For each function in D𝐹 , we utilize a driver

function to learn (1) its I/O pairs, and (2) whether or not the function is well-formed, i.e., whether
it contains undefined behavior. Figure 7a shows the template for the driver function, and Figure 7b
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shows an example driver function for the function “add()”. For a function 𝐹𝑖 ∈ D𝐹 , the general I/O

construction works as follows:

(1) Include the function definition 𝐹𝑖.def in the driver template, i.e., line 4 in Figure 7a and

lines 3-6 in Figure 7b.

(2) For each argument of 𝐹𝑖 , synthesize a statement to randomly pick a value with this type,

i.e., lines 9-11 in Figure 7a and lines 9-10 in Figure 7b. “RAND()” function only returns

values within the valid range for the given type. For instance, RAND("char") returns values
between -128 and 127.

(3) Synthesize a function call statement and put the return value into a variable with type

𝐹.ret_type, i.e., line 13 in Figure 7a and line 13 in Figure 7b.

(4) Log the inputs and output, i.e., lines 16-17 in Figure 7a and lines 16-17 in Figure 7b.

The synthesized driver function is then compiled and executed. We use sanitizers [Team 2023]

and CompCert [Leroy 2009, 2023] to examine whether or not the driver function is well-formed. If

all examinations are successful, we save the logged input/output pair into the database. For instance,

one valid input/output pair of Fig. 7b is {input=[1,2], output=3}. In practice, we will try to run

each driver function multiple times to save more than one input/output pair into the database.

Now, new items 𝐹𝑖 .input and 𝐹𝑖 .output are added to the database. At this point, all functions in the
database are free of undefined behaviors when calling them with the inputs cached in 𝐹𝑖 .input.

5 EVALUATION
This section presents the details of our extensive evaluation of Creal, demonstrating its practical

effectiveness. In a nine-month period until mid-November 2023, we ran Creal to test two open-

source compilers, GCC and LLVM. Our testing results are summarized as follows:

• Creal has found many new bugs. Within 9 months of testing, Creal has detected 132 bugs, of

which compiler developers have confirmed 121 bugs and fixed 97 bugs.

• Creal has found many miscompilation bugs. Of all 132 detected bugs, 79 (60%) of them are

miscompilation bugs, the most severe and hard-to-detect compiler bug type.

• Creal has found many latent bugs. We reported 41 latent bugs in GCC and LLVM. These bugs

have escaped all previous generation- and mutation-based compiler testing techniques.

5.1 Experimental Setup

Compiler versions. Our evaluation focuses on widely used and mature production C compilers,

GCC and LLVM. To avoid reporting previous known bugs, we used Creal to test the latest develop-

ment versions of both GCC and LLVM. We used all five standard optimization levels, i.e., -O0, -O1,
-Os, -O2, and -O3, in both compilers for extensive testing.

Seed programs. We used Csmith [Yang et al. 2011], a mature random C program generator, to

generate seed programs for Creal. Csmith has been widely adopted by many compiler testing

techniques [Chen et al. 2020; Even-Mendoza et al. 2021; Lidbury et al. 2015] and has been de facto
default program generator for C compiler testing. There are three main strengths in using Csmith:

(1) it can generate complex programs, providing Creal rich opportunities to mutate on; (2) all

Csmith-generated programs are self-contained, meaning that they do not take external inputs and

can be executed; and (3) Csmith-generated programs and their mutants can be effectively reduced

with existing tools like C-Reduce [Regehr et al. 2012].

Function database.We used our function extractor to extract functions from open-source projects.

AnghaBench [da Silva et al. 2021] provides intermediate access to the source files of 146 most
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Table 1. Status of the reported bugs.

Status GCC LLVM Total
Reported 3 1 4

Confirmed 13 11 24

Fixed 38 59 97

Duplicate 5 2 7

Total 59 73 132

Table 2. Type of found bugs.

Symptom GCC LLVM Total
Crash 22 31 53

Miscompilation 37 42 79

Fig. 8. Statistics about #lines and #branches of func-
tions in the constructed database.

starred open-source C projects on GitHub, such as OpenSSL, PHP, Linux kernel, to name a few. On

top of AnghaBench, we crawled over one million functions from these 146 projects. After extraction

and I/O generation as described in Section 4, we collected a function database of 51,356 functions.
The majority of crawled functions are discarded due to unsupported input or return types. We

count the number of lines and branches in our collected functions. Figure 8 shows the distributions.

We can see that most functions have fewer than 30 lines and 10 branches. On average, the number

of lines in a function is 17 while the number of branches in a function is 4.

Hardware. We conducted all our evaluations on two Linux servers running Ubuntu 20.04 LTS.

Both are equipped with an AMD EPYC 7742 64-core CPU and 256GB RAM.

Testing process. Our testing process runs continuously and is fully automated. We first use Csmith

to generate a seed program, then apply Creal to generate 10 mutants. The FlipCoin() probability

in Section 3.2 is set to 20%. Then, we use both GCC and LLVM with different optimization levels to

compile and run these programs. Since all mutants are semantics-preserving, we use the output

from the seed program as the reference oracle. Once a compiler crash or miscompilation is observed,

we use C-Reduce to reduce the bug-triggering program into a small reproducing program and then

make a bug report with it.

5.2 Quantitative Results: Bug-Finding

Number of bugs. Table 1 summarizes the status of all found bugs in GCC and LLVM. As of mid-

November, 2023, we have filed a total of 132 bug reports to GCC and LLVM. The compiler developers

have acknowledged, i.e., confirmed or fixed, 92% of them (121/132) as previously unknown and

new bugs, while they have fixed 73% of them (97/132). In particular, GCC and LLVM developers

confirmed or fixed respectively 86% and 96% of our filed bugs. As mature and production compilers,

both GCC and LLVM have been extensively tested in industry and academia. The significant number

of new bugs highlights the substantial bug-finding ability of Creal. The “Reported” bugs are still

waiting for developers’ confirmation. Since there are other compiler developers, users, and testers

reporting bugs, 5 bugs in GCC and 2 bugs in LLVM are marked as “Duplicate”.

Types of bugs. Table 2 summarizes the types of found bugs. All bugs can be categorized into the

following two types: (1) “Miscompilation”: The compiler incorrectly compiles the program and

produces a wrong executable code, which has a different semantics from the source program, and

(2) “Crash”: The compiler crashes when compiling the program due to either run-time failures or
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Table 3. Affected LLVM compo-
nents.

Component #Bugs
Peephole Optimizations 17

Loop Transformations 11

Backend 6

Induction Variable Trans. 6

Scalar Evolution Analysis 5

Global Value Numbering 4

SLP Vectorization 4

Selection DAG 3

Alias Analysis 2

Induction Variable Analysis 2

CFG Transformations 1

Dead Store Elimination 1

Dominance Optimizations 1

Escape Analysis 1

Pass Management 1

Vectorization Optimizations 1

Table 4. Affected GCC compo-
nents.

Component #Bugs
Loop Transformations 10

Peephole Optimizations 9

CFG Transformations 7

Loop Analysis 3

Value Range Analysis 3

Vectorization 3

Constant Propagation 2

IR Data Structures 2

Dead Store Elimination 1

Jump Threading 1

Liveness Analysis 1

Predictive Commoning 1

Redundancy Elimination 1

Fig. 9. Stable compiler versions that
are affected by our reported bugs.

Fig. 10. Number of inserted functions
in reduced bug-triggering programs.

assertion failures. As the table shows, more than half of the bugs (79 out of 132) are miscompilations,

the most critical and hard-to-detect bugs [Chen et al. 2020; Sun et al. 2016].

Importance of bugs. The fix of 97 out of 132 bugs, predominantly miscompilations, has highlighted

the critical impact of the bugs. For GCC bugs, developers will classify bugs according to their

priority and severity. P3 is the default while P1 is the highest priority. Developers have to fix all P1
bugs before making the next release. Out of the 59 GCC bugs, 19 (32%) of them are assigned as P1.

To understand the impact of found bugs, we ran each bug-triggering test case on stable compiler

versions since GCC-5 and LLVM-9. Figure 9 shows for each compiler version, how many bugs affect

it. It indicates that Creal can find many long-latent bugs. Specifically, there are 14 bugs affecting
GCC versions earlier than GCC-11 and 7 bugs affecting LLVM versions earlier than LLVM-13. These

compiler versions have been released for 2 ∼ 8 years. Since these long-latent bugs have escaped all

existing testing techniques, it further confirms the significant bug-finding capability of Creal.

Affected compiler components.We studied all fixed bugs on which compiler developers provided

detailed diagnoses and fix messages, allowing us to identify the affected compiler components

accurately. Tables 3 and 4 list all the affected compiler components in LLVM and GCC. One may be

concerned that Creal can only find control-flow related bugs as we only inject function calls into

seed programs. However, from the tables, it is evident that these bugs impact a diverse range of

compiler components. In both GCC and LLVM, loop transformations and peephole optimizations

account for more bugs than other components. This finding is aligned with the existing empirical

study [Zhou et al. 2021] that instruction combination (peephole optimization) is one of the most

buggy optimizations and loop optimizations are more bug-prone than other optimizations.

5.3 Bug Characteristics
For all the unique and new bugs (121 bugs), we identified what real-world functions account for

triggering the bug. Because Creal injected multiple functions into a seed program, we automatically
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removed all irrelevant functions and only kept the functions that were essential to trigger the

underlying bug. Note that, it is possible that more than one function is required to trigger a bug.

With this information, we answer the following questions:

➤ How many functions are in bug-triggering programs? Figure 10 summarizes the number

of real-world functions in each reduced bug-triggering program. The first bar shows that out of

all 121 bug-triggering programs, 54 of them have only one single real-world function inserted,

demonstrating the ability of one real-world function to enhance seed programs’ features. The

rest half, nearly all of them, have ≤ 4 inserted functions, with only a few having more than 5

functions. This means that the combination of a small number of functions can further enhance

the expressiveness of seed programs.

➤Can real-world functions alone trigger bugs? Figure 10 shows that 54 out of 121 bug-triggering
programs contain only one real-world function. One may wonder if the seed programs are necessary,

i.e., if we can find many compiler bugs without using Csmith-generated seed programs. To answer

this question, we used the driver function from Section 4 as the seed to build a well-formed program

for each function in the database. Then, we compiled and ran these programs with different

compilers to test if we could find compiler bugs. The result is that we did not find any compiler bugs.
This emphasizes the importance of incorporating complex run-time semantics from seed programs.

We also checked if there are functions that lead to to multiple bugs. We identified that 5 real-world

functions contribute to more than one bug, highlighting the importance of injecting real-world

functions into seed programs: different injections may uncover different bugs.

➤ What are the unique features in bug-triggering functions? We manually analyzed each

minimized bug-triggering program to figure out what unique code features are in the real-world

functions. We find two notable features that appear in 21 bugs:

• Unbounded complex loop, where the loop conditions are not bounded by a constant value and

have complex dependency with the loop body. This feature is present in 11 bug-triggering

programs. As discussed before, generating complex loops is difficult for random program

generators, due to the need to guarantee termination and avoid undefined behavior.

• Employing switch/case statements, where the function employs “switch. . . case. . . ” statements

to build control flow. This feature is present in 10 bug-triggering programs. Each switch often
comes with multiple (5 ∼ 21) cases conditioning on the same expression. Csmith does not yet

support this feature.

The remaining bug-related functions have various features. They typically have either unique

syntax such as the above two constructs or unusual real-world semantics such as flipping bits and
rotating arrays. Although random program generators support the syntax in these functions, the

underlying semantics are nearly impossible to be from random generation. We will include more

sample bugs in Section 5.7 to further demonstrate this point.

5.4 Code Coverage and Generation Speed
We conduct code coverage analysis to understand if Creal can increase code coverage. We randomly

generated 1,000 seed programs with Csmith. Then, we use Creal to generate 10 mutants per seed,

which leads to a total of 10,000 programs from Creal. For a fair comparison against Csmith, we

also used Csmith to generate 10,000 random programs. For each set of programs, we collected

their function, line, and branch coverage on GCC and LLVM
3
. Table 5 reports the results. It is

clear that Creal achieves significantly higher code coverage. Compared to the seed programs,

Creal remarkably increased line coverage in GCC by 6.3% (55,761 more lines) and in LLVM by

3
We used gcov for GCC coverage collection and llvm-cov for LLVM coverage collection.
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Table 5. Line coverage (LC), function coverage (FC),
and branch coverage (BC) of GCC and LLVM.

Compiler Generator LC FC BC

GCC

Seeds (1,000) 30.9% 34.3% 19.2%

Csmith (10,000) 33.6% (+23,897) 35.5% (+1,055) 21.4% (+24,055)

Creal 37.2% (+55,761) 37.5% (+2,813) 24.0% (+52,485)

LLVM

Seeds (1,000) 33.3% 24.9% 18.2%

Csmith (10,000) 34.7% (+22,788) 25.8% (+801) 20.3% (+14,166)

Creal 35.9% (+42,952) 26.9% (+1,864) 22.1% (+27,382)
Fig. 11. Line coverage of different variants of
Creal and Hermes.

2.6% (42,952 more lines). Creal also shows significantly higher coverage compared to the same

amount of Csmith-generated programs. Overall, the large amount of extra code regions signifies

that Creal-generated programs cover more code features.

With the same set of seeds, we measured the generation speed of Creal. Generating 10,000

mutants took 8,710 seconds, an average of 0.87 seconds per mutant. During our testing process,

we observed that compiling and executing programs consumed most of the time (≥ 3 seconds per

mutant), while program generation was not a bottleneck.

5.5 Significance of Function Database
To evaluate the impact of real-world functions, we construct three variants of Creal:

• Creal- 1
2
: We halve the size of the real-world function database used in Creal. We randomly

selected half of the functions and let Creal use this smaller database during generation.

• Creal- 1
4
: We further halve again the size of the real-world function database used in Creal.

• Creal-𝐶𝑠𝑚𝑖𝑡ℎ : Instead of using real-world functions, we extract functions fromCsmith-generated

programs. We build a new function database of the same size as in Creal, i.e., 50,000 functions
from Csmith-generated programs. Then, we set up Creal to use this new function database.

Comparing against Creal-
1

2
and Creal-

1

4
helps us understand if more real-world functions in the

database can offer richer code features. Comparing against Creal-𝐶𝑠𝑚𝑖𝑡ℎ helps us understand the

necessity and importance of using functions from real-world projects.

Code coverage analysis. We ran these variants on the same 1,000 seeds as in Section 5.4. We let

each tool generate 10 mutants per seed. Figure 11 shows the covered lines by each variant. Overall,

our default Creal achieves the highest line coverage in both GCC and LLVM. Compared to both

Creal-
1

4
and Creal-

1

2
, we can see that with the increase of database size, the line coverage also

increases. This confirms the necessity of using a large set of real-world functions. Compared to

Creal-𝐶𝑠𝑚𝑖𝑡ℎ , which has the same number of functions as Creal, all variants based on real-world

functions significantly surpass it. We can further confirm that real-world functions enhance the

functionality and expressiveness of seed programs.

Bug-finding analysis. Our analysis of bug-triggering programs in Section 5.3 has shown that

nearly all of the bugs are triggered by different real-world functions except for 5 functions. When

using a smaller database such as Creal-
1

4
, it is very likely to exclude many bug-relevant functions.

Using such a small database would not be able to detect as many bugs as the full-size database. It is

thus clear that reducing the number of real-world functions hinder the bug-finding capability of Creal.
We also evaluated the bug-finding capability of Creal-𝐶𝑠𝑚𝑖𝑡ℎ . To this end, (1) we ran Creal-𝐶𝑠𝑚𝑖𝑡ℎ

for one week on the same machine to see if it could find any new bugs, and the result shows that

Creal-𝐶𝑠𝑚𝑖𝑡ℎ failed to find any new bugs. (2) we selected all fixed bugs (97 bugs) found by Creal,

then applied Creal-𝐶𝑠𝑚𝑖𝑡ℎ to mutate each seed program that was used by Creal to trigger the bug.
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Considering the stochastic nature of Creal, we let Creal-𝐶𝑠𝑚𝑖𝑡ℎ mutate for one hour, generating

more than 200 mutants per seed (instead of 10 used in Creal). In the end, Creal-𝐶𝑠𝑚𝑖𝑡ℎ re-discovered

3 bugs in LLVM and 0 in GCC, which are all recent regressions. All three bugs are crash bugs, and

no miscompilation was found.

5.6 Comparison of Creal v.s. Hermes
We also compared Creal against Hermes [Sun et al. 2016], which is the most recent and powerful

EMI-based compiler testing tool.

Code coverage analysis.We used the same 1,000 seeds as in Section 5.4 and applied Hermes to

generate 10 mutants per seed. In the end, we obtained 10,000 Hermes-generated programs, the same

number as Creal. The last bars in Figure 11 show the achieved line coverage of Hermes on GCC

and LLVM. Hermes improved line coverage compared to the seed programs, but the improvement

is not as significant as Creal. Since all Hermes-injected code snippets are derived from a relatively

simple grammar, it is expected to exercise much fewer code features than Creal.

Bug-finding analysis. According to EMI’s project website [Group 2023], Hermes has been con-

stantly used for finding compiler bugs until now: “We have maintained our continuous, extensive
effort in stress-testing GCC and LLVM to benefit the entire community”. Despite their efforts, the 121
new compiler bugs demonstrate at least the complementary bug-finding capability of Creal. To

understand if Hermes can re-discover the bugs found by Creal, as in Section 5.5, we selected all

fixed bugs (97 bugs) and applied Hermes to mutate each seed program that was used by Creal to

trigger the bug. For each seed, we ran Hermes for one hour, generating more than 100 mutants per

seed (instead of 10 used in Creal). The result shows that Hermes was able to re-discover 3 bugs.

Despite the evaluation favoring Creal, we stand by the fact that the strengths of both Creal and

Hermes are complementary. Similar to Csmith, Hermes can be used as a program generator, on top

of which Creal can bring in real-world code features.

5.7 Case Study

Figure 12a: This program triggers a miscompilation bug in GCC. The function real is extracted
from FreeBSD [FreeBSD 2023], which converts an input numeric variable dest into a pointer and

then operates over this pointer. GCC incorrectly handles the while loop by asserting that this

loop must be executed at least once. The reason is that *ptr and len are from the same variable

j and the pointer *ptr is used in line 7, which leads GCC to conclude that len must not be zero

otherwise *ptr would deference a null pointer. Line 5, where an integer is converted to a pointer,

is essential to trigger this bug. Such corner functionality cannot be covered by generators.

Figure 12b: This program triggers an assertion failure at Clang -O1: “TableSize >= Values.size() &&
"Can’t fit values in table!"”. The function real is extracted from GBStudio [Studio 2023] and has

more than 20 case branches. We omit the majority of them for easier presentation. The compiler

incorrectly infers the value range of effectnum when simplifying the control flow graph. The

multiple branches conditioning on the same variable is important to trigger the bug.

Figure 12c: This program triggers a latent miscompilation bug since GCC-10. The function real is
extracted from QMKFirmware [Firmware 2023], which rotates the bit stream of the input x. GCC
has built-in rotation optimizations which incorrectly handle this case. The rotation functionality,

critical to triggering this bug, is almost impossible for a random program generator to generate.

Figure 12d: This program triggers a miscompilation bug in LLVM. The root cause is in the

backend, which incorrectly rewrites the expression at line 7. The operand “low” and the last “-low”
are essential to trigger this bug. The function real is extracted from FreeType [FreeType 2023].
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1 int a, f, i, h;
2 static int *e, *g;
3

4 long real (long dest, int val, long len){
5 char *ptr = (char*)dest;
6 while (len-- > 0)
7 *ptr++ = val;
8 return dest;
9 }
10

11 int main() {
12 unsigned j = i, c = 0;
13 for (a=1; a<2; a++) {
14 j = real(j, c, j);
15 if (e) break;
16 }
17 const int **k = &e;
18 j && (*g)--; *k = 0;
19 printf("%d\n", f);
20 }

(a) GCC at -O1 miscompiles this code. The com-
piled binary produces 2 instead of 1.

1 static int a=0, *b, *c = &a; int d, e;
2 int real(int effectnum,int *converted_num){
3 switch (effectnum) {
4 case 0x0:
5 *converted_num = effectnum;
6 return 1;
7 case 0x4: return 1;
8 case 0x5:
9 *converted_num = effectnum+1;
10 return 0;
11 default: return 0;
12 }
13 }
14 int main() {
15 unsigned h=0;
16 for (; a + h <= 6; h = h + 3)
17 for (; d; d++);
18 int j, *k = c, d = &k != &b;
19 int g = real(h, &j); e = g;
20 }

(b) Clang -O1 crashes on this code. It triggers an
assertion failure in SimplifyCFG component.

1 int a, b, c, d;
2 int *e = &c;
3 unsigned real(unsigned char x) {
4 x = ((x >> 1) & 0x55) | ((x << 1) & 0xaa);
5 x = ((x >> 2) & 0x33) | ((x << 2) & 0xcc);
6 x = ((x >> 4) & 0x0f) | ((x << 4) & 0xf0);
7 return x;
8 }
9 void h(unsigned g) {
10 *e = 8 > real(g + 86) - 86;
11 }
12 int main() {
13 d = a && b;
14 h(d + 4);
15 printf("%d\n", c);
16 }

(c) GCC at -O1/2/3/s miscompiled the code. The com-
piled binaries output 0 instead of 1.

1 static int a = -3, b;
2 static char c;
3 int d;
4 int real(int low, int high) {
5 if (low - high < 0x10000L)
6 return low;
7 return low + (1 % (- low));
8 }
9 int main() {
10 int *h[] = {&a, &a};
11 for (; c <= 8; ++c) {
12 int *i = &b;
13 *i |= real(a, 8) + d;
14 }
15 printf("%d\n", b);
16 }

(d) Clang at -Os miscompiles this code. The com-
piled binary produces -1 instead of -3.

Fig. 12. Sample reduced programs that trigger compiler bugs.

Although it seems that such a function has trivial syntax, the semantics that the same operand

“low” has to appear twice with negated values is non-trivial.

6 RELATEDWORK
In this section, we discuss related work in the context of compiler testing.

Generative compiler testing. Generative compiler testing utilizes random programs produced by

a well-engineered generator to test compilers. Csmith [Yang et al. 2011] is by far the most impactful

program generator for finding C/C++ compiler bugs. It can produce a large amount of well-formed

programs and found hundreds of compiler optimization bugs when it was launched more than
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ten years ago. Csmith has been also adapted for other compiler testing scenarios. For example,

CLsmith [Lidbury et al. 2015] modifies Csmith to test OpenCL compilers. YARPGen [Livinskii

et al. 2020] and its follow-up second version YARPGen v2 [Livinskii et al. 2023] are more recent

re-designed program generators targeting scalar and loop optimizations, respectively. Together,

they have discovered hundreds of optimization bugs in a few years.

A key challenge for generative tools is to guarantee the validity of the generated programs.

Extensive engineering efforts are an absolute necessity to support a wide range of yet incomplete

language features. Due to the stochastic nature of random generation, certain code semantics such

as the ones discussed in § 5.7 have low probabilities of being generated. Creal tackles this challenge

by embracing the power of rich open-source projects and requires relatively low engineering efforts.

Conceptually, our solution can be effortlessly adapted to any generator-based approach.

Mutation-based compiler testing. Another line of compiler testing is based on mutation. The

most effective approaches are the series of equivalence modulo inputs (EMI) work [Le et al. 2014,

2015; Sun et al. 2016]. Given a seed program, EMI mutates the seed program by removing/changing

dead regions or inserting code into live regions. EMI guarantees that the mutated program has

the same semantics w.r.t. the same input. GrayC [Even-Mendoza et al. 2023] mutates seed pro-

grams with coverage guidance. This approach is effective in finding compiler crashes, however, no

miscompilation could be found.

Similar to the generators, they are also limited by the designed mutation rules and the seed

programs. Although our approach is based on mutation, the large amount of available real-world

code provides us with more elevated diversity in generating mutants.

Using real-world code for compiler testing. There are indirect usages of real-world code by

using machine learning models for compiler testing. DeepSmith [Cummins et al. 2018] trains an

OpenCL program generator on a large set of real-world code. Fuzz4All [Xia et al. 2023] utilizes

large-language models to produce programs. One fundamental limitation of these approaches is

no guarantee of the validity of generated programs. Instead of using models, LangFuzz [Holler

et al. 2012] aims at fuzzing JavaScript interpreters and uses code fragments from bug reports.

FreeFuzz [Wei et al. 2022] collects API information from deep learning libraries and then synthesizes

API calls to test deep learning compilers. Our work differentiates from these efforts by semantically

fusing real-world code with the seed program and ensuring program validity. Program synthesis.
Much work has been done in the domain of program synthesis [Gulwani et al. 2017]. The goal

is to automatically find a program that satisfies the user-intended specifications such as logical

constraints [Manna and Waldinger 1980] and input/output examples [Osera and Zdancewic 2015].

The purpose of program synthesis is not testing compilers but rather aiding human programmers,

education, etc.

7 CONCLUSION
We have presented our idea of using real-world code for boosting compiler testing. Our method

first constructs a function database by collecting functions from real-world applications. We then

augment each function with input/output pairs to model function semantics precisely. With the

function database, we synthesize function calls and inject them into seed programs. We have

demonstrated the effectiveness of our tool, Creal, by identifying 132 bugs with 121 confirmed and

97 fixed in the two most popular C compilers, GCC and LLVM.

Our innovative approach of blending real-world code with synthetic programs offers a compelling

and optimistic research direction for testing compiler implementations. From a technical standpoint,

discovering more effective methods for extracting code could enhance the variety and versatility of

generated programs. From an application standpoint, further research is needed to explore how

this approach can be applied to other language compilers.
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