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Accelerating Fuzzing through Prefix-Guided Execution
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Coverage-guided fuzzing is one of the most effective approaches for discovering software defects and vulnera-

bilities. It executes all mutated tests from seed inputs to expose coverage-increasing tests. However, executing

all mutated tests incurs significant performance penalties—most of the mutated tests are discarded because

they do not increase code coverage. Thus, determining if a test increases code coverage without actually
executing it is beneficial, but a paradoxical challenge. In this paper, we introduce the notion of prefix-guided
execution (PGE) to tackle this challenge. PGE leverages two key observations: (1) Only a tiny fraction of the

mutated tests increase coverage, thus requiring full execution; and (2) whether a test increases coverage

may be accurately inferred from its partial execution. PGE monitors the execution of a test and applies early

termination when the execution prefix indicates that the test is unlikely to increase coverage.

To demonstrate the potential of PGE, we implement a prototype on top of AFL++, which we call AFL++-PGE.

We evaluate AFL++-PGE on MAGMA, a ground-truth benchmark set that consists of 21 programs from nine

popular real-world projects. Our results show that, after 48 hours of fuzzing, AFL++-PGE finds more bugs,

discovers bugs faster, and achieves higher coverage. Prefix-guided execution is general and can benefit the

AFL-based family of fuzzers.
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1 INTRODUCTION
Fuzzing has rapidly become one of the most popular automated testing techniques due to its

simplicity and effectiveness in finding software defects and vulnerabilities [Aizatsky et al. 2016;

Manès et al. 2019]. State-of-the-art fuzzing efforts center on coverage-guided fuzzing (CGF), e.g.,
American Fuzzy Lop (AFL) [Zalewski 2014]. CGF works by generating a large number of tests from

mutating seed inputs. All tests are executed on a target binary, and those coverage-increasing tests

will be added to the seed pool for further exploration. Many previous efforts have shown that only

a tiny fraction of the generated tests increase code coverage, e.g., fewer than 1 in 10,000 [Nagy and

Hicks 2019]. Thus, the current practice of blindly executing all generated tests is wasteful.

Significant research efforts have targeted this inefficiency, such as (1) seed scheduling [Lyu et al.

2019; Manès et al. 2020]: effectively select seed-to-mutate from the seed pool to prioritize seeds

that are likely coverage-increasing or bug-triggering, (2) tracing-cost reduction [Nagy and Hicks

2019; Nagy et al. 2021; Zhou et al. 2020]: reduce the cost of coverage tracing with sophisticated

designs, and (3) new mutations [Lemieux and Sen 2018; She et al. 2020]: perform targeted instead

of random mutations to increase the likelihood of covering new regions. However, they still need

Authors’ addresses: Shaohua Li, shaohua.li@inf.ethz.ch, ETH Zurich, Switzerland; Zhendong Su, zhendong.su@inf.ethz.ch,

ETH Zurich, Switzerland.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/4-ART75

https://doi.org/10.1145/3586027

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 75. Publication date: April 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://doi.org/10.1145/3586027
https://doi.org/10.1145/3586027
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/


75:2 Shaohua Li and Zhendong Su

 1 int foo(int a, int b) 
 2 {
 3   int ret = 0;
 4   while ( a < 1) 
 5   {
 6     a++, ret++;
 7   }
 8   if (b == 1) 
 9   {
10     a--;
11   }

12   if (a + b >= 0) {
13     ret++;
14     if (ret == 2)
15       ret++;
16   }
17   if (a==0 && b==1 
18       && ret==3) {
19     ret = 0;
20   }
21   return ret;
22 }

(a) A constructed code snippet.
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(b) Execution traces of inputs mutated from foo(1, 0). (c) Prefix tree of traces.

foo(0, 0)  4, 6, 4, 8,12,13,14,15,17,21⇒

foo(0, 1)  4, 6, 4, 8,10,12,13,14,15,17,19,21⇒

foo(0, -1)  4, 6, 4, 8,12,13,14,15,17,21⇒

foo(1, 0)  4, 8,12,13,14,17,21⇒

foo(-1, 0)  4, 6, 4, 6, 4, 8,12,13,14,17,21⇒

foo(1, 1)  4, 8,10,12,13,14,17,21⇒

foo(-1, 1)  4, 6, 4, 6, 4, 8,10,12,13,14,17,19,21⇒

foo(1, -1)  4, 8,12,13,14,17,21⇒

foo(-1, -1) 4, 6, 4, 6, 4, 8,12,13,14,17,21⇒

Prefix of length 4

Fig. 1. Illustrative example.

to fully execute a large amount of non-coverage-increasing tests. Thus, avoiding executing non-

coverage-increasing tests can significantly improve fuzzing efficiency. The key challenge is how to

effectively make this determination at a low cost. Indeed, if we can decide whether or not a test

increases coverage at a lower cost than a full test execution, we can reduce execution overhead and

thus improve fuzzing efficiency.

To this end, this paper introduces prefix-guided execution (PGE), a novel solution to the afore-

mentioned challenge. PGE monitors the execution of a test and applies early termination when the

execution prefix indicates that the test unlikely increases coverage. Generally, a program execution

is a temporal transition sequence of program states. Code coverage metrics abstract over both

program states and transitions. We refer to full execution as the complete temporal sequence,

while execution prefix as the contiguous subsequence from the program entry. PGE is based on the

hypothesis that whether a full execution leads to increased coverage may be effectively inferred

from its prefix. Suppose that a short execution prefix suffices for accurately inferring whether the

corresponding full execution increases code coverage, we can speed up fuzzing by focusing on only

fully executing those coverage-increasing tests.

Figure 1 illustrates the intuition behind PGE with a constructed code snippet. Figure 1(a) shows

the constructed function foo. To maximize code coverage, e.g., line coverage, a fuzzer needs to
generate tests to reach lines 6, 10, 13, 15, and 19, all of which rely on earlier program executions. For

instance, reaching line 19 requires the satisfaction of three guards and the referred variables being
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suitably used/updated by previous statements. Figure 1(b) lists execution traces of tests mutated

from the seed (1,0) in a top-down manner. Rectangular frames highlight coverage-increasing

tests. Out of the eight mutated tests, three increase line coverage. We also build the corresponding

prefix tree for these traces in Figure 1(c). From this prefix tree, we can see that, to differentiate

all full execution traces, prefixes of length 7 are needed (indicated by the second dotted line). To

separate coarser-grained coverage-increasing traces, prefixes of length at most 4 are then sufficient

(indicated by the first dotted line). Figure 1(b) highlights in grey the first occurrences of unique

prefixes of length 4. We can find that these unique prefixes cover all interesting tests, namely

the seed and coverage-increasing tests. Suppose that a fuzzer monitors execution prefixes (with

a fixed length of 4) and terminates an execution immediately whenever its prefix has occurred

before. Fuzzing foo with tests in Figure 1(b) would result in 4 full executions on prefix-unique

tests and 5 partial executions on the rest. The execution overhead is thus reduced on 5 out of the

9 tests. In practice, a large fraction of tests generated by fuzzers is neither coverage-increasing

nor prefix-interesting. Guiding executions with such prefixes in fuzzing can potentially lead to

significant cost reduction.

At a high level, for a CGF-style fuzzer, PGE works as a replacement for the fuzzer’s execution

engine. Instead of fully executing all tests, PGE selects prefix-interesting ones to fully execute

them and discards all the others. A proper prefix length is crucial for the performance of PGE.

However, for a general target, it is challenging to determine a prefix length that can identify

coverage-increasing tests while being as small as possible. Utilizing static/symbolic analysis to

reason about constraints between different program locations and decide a proper prefix length,

although plausible in theory, is difficult to (1) scale to complex real-word code (which is why fuzzing

is much more widely adopted) and (2) handle low-level code (e.g., binaries) for settings where
source code is unavailable. To tackle this challenge, we propose a sampling-based search algorithm

to dynamically infer prefix lengths with low overhead. Our algorithm simulates the current fuzzing

loop and finds the prefix length that can recall a desired amount of interesting tests.

As Section 2 will show, a relatively short execution prefix can help identify a large proportion of

coverage-increasing tests. Since finding bugs is the ultimate goal of fuzzers, we will also show that

execution prefixes can also effectively identify bug-triggering tests.

In summary, this paper makes the following main contributions:

• It studies the correlation between execution prefixes and the coverage increasingness of tests

by quantifying their strong connection across nine real-world projects.

• It proposes the novel, general technique of prefix-guided execution (PGE) to speed up and

improve fuzzing by early terminating executions that unlikely increase coverage.

• It presents a simple prefix length search algorithm for finding a proper prefix length to

effectively guide PGE.

• It realizes PGE in AFL++-PGE, a prototype on top of AFL++, and extensively evaluates

AFL++-PGE to demonstrate its utility in terms of fuzzing cost reduction, coverage increasing,

and bug detection.

2 OBSERVATIONS ON CGF
This section introduces several key observations on coverage-guided fuzzing (CGF) that PGE builds

upon. Without loss of generality, given a target binary and an initial seed pool, the high-level

workflow of a fuzzer is as follows:

(1) Seed selection. Select one seed from the seed pool according to predefined strategies.

(2) Test generation.Mutate the seed to generate a large number of tests.
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Table 1. Rates of Coverage-increasing Tests Out of All Tests Generated in One Hour By AFL++.

libpng libsndfile libtiff libxml2 lua openssl php poppler sqlite3 avg.

0.03% 0.05% 0.11% 0.21% 0.24% 1.00% 0.25% 2.12% 0.11% 0.46%

(3) Execution and feedback collection. Execute each of the tests on the target binary and

collect coverage feedback, queue a test to the seed pool if it increases coverage, and report it

when it causes an execution failure, e.g., crash.

(4) Go to step 1 and repeat.
The workflow shows that coverage-guided fuzzers work in a loop. In each loop, the selected seed

will be mutated and blindly executed a tremendous amount of times to filter out those coverage-

increasing ones. However, as has been reported by previous work [Nagy and Hicks 2019], the

overwhelming majority of test cases are non-coverage-increasing. Although executing the target

binary on them wastes most of the allocated resources, fuzzers still have to do so as it is by now

the only way to understand whether a test increases coverage.

However, as we will show in this section, it is possible to accurately infer coverage-increasing

property without full test execution—partial execution suffices in most cases. We use 21 programs

from nine real-world projects in Magma benchmark [Hazimeh et al. 2020] to demonstrate the key

observations that our design relies on. We averaged the results of programs from the same project.

We choose, as our target fuzzer, the most popular coverage-guided fuzzer AFL++ [Fioraldi et al.

2020] on which many fuzzers are built. All experiments are run with the same setup as that for our

later performance evaluation.

Observation 1: Only a tiny fraction of tests are coverage-increasing.

We run AFL++ on each program for an hour. All experiments are repeated 12 times with different

initial seeds. We log the total number of generated tests during fuzzing. The number of coverage-

increasing tests are learned by counting the new seeds that AFL++ appends into the seed pool. In

AFL++, a test is interesting when it reached new edges or significantly increased edge counts. We

treat both cases as coverage-increasing. Table 1 shows the averaged rates of coverage-increasing

tests during one hour of fuzzing. On seven out of nine projects, less than 1% tests generated by

AFL++ increased coverage. On average, AFL++ has 0.46% coverage-increasing tests out of all tests

in each one hour trial. That means during the first hour of fuzzing, averagely only 4 out of 1000

tests are actually interesting and worth executing. If we are able to choose only those interesting

ones, the execution cost on the remaining large number of tests can be saved.

Observation 2: Execution prefixes correlate highly with a test’s coverage increasingness.

Mainstream coverage-guided fuzzers use basic block edges as their coverage metrics (26 out

of 27 as reported in [Nagy et al. 2021]), so our study focuses on edge coverage as well. For a

coverage-guided fuzzer, we denote an execution trace 𝑇𝑘
as an ordered temporal sequence 𝑇𝑘 =

⟨𝑒𝑘
0
, 𝑒𝑘

1
, . . . , 𝑒𝑘𝑛−1⟩, where 𝑒𝑘𝑖 , 𝑖 ∈ [0, 𝑛) is the 𝑖-th edge this execution accessed. Tracing all temporal

execution traces during fuzzing is extremely costly. Instead, AFL++ uses a global coverage bitmap
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Fig. 2. Recall of coverage-increasing executions from interesting execution prefixes.

with counts to store the accessed edges such that an execution is identified by 𝐸𝑘 =𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡 (𝑇𝑘 ) =
{𝑒𝑘

0
, 𝑒𝑘

1
, . . . , 𝑒𝑘𝑛−1}1, where the item ordering is ignored and duplicated edges are included. Before

introducing our observation, we first define the notion of execution prefix used in this work.

Definition 2.1 (Execution Prefix). Given an execution trace 𝑇𝑘
of length 𝑛 and predefined pre-

fix length 𝑙 ≤ 𝑛, the execution prefix of 𝑇𝑘
is defined as Π𝑘 (𝑙) = 𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡 (⟨𝑒𝑘

0
, 𝑒𝑘

1
, . . . , 𝑒𝑘

𝑙−1⟩) =
{𝑒𝑘

0
, 𝑒𝑘

1
, . . . , 𝑒𝑘

𝑙−1}.

This definition shows that an execution prefixΠ𝑘 (𝑙) is a subset of the corresponding full execution
𝐸𝑘 . This feature allows us to reuse the bitmap structure in AFL++ and obtain Π𝑘 (𝑙) by terminating

the execution when accessing the 𝑙-th edge (See technical details in Section 3.2). AFL++ considers

a test interesting when it increases coverage. Since our goal here is to discover the connection

between execution prefixes and such interestingness of full executions, we define next the notion

of interesting execution prefix.

Definition 2.2 (Interesting Execution Prefix). Given a predefined prefix length 𝑙 ,𝑚 seen execu-

tions E = {𝐸0, 𝐸1, . . . , 𝐸𝑚−1}, and their execution prefixes P = {Π0 (𝑙),Π1 (𝑙), . . . ,Π𝑚−1 (𝑙)}. The
subsequent execution prefix Π𝑚 (𝑙) of 𝐸𝑚 is interesting iff Π𝑚 (𝑙) ∉ P.
This definition shows that when determining whether an execution prefix Π𝑚 (𝑙) is interesting

or not, each seen execution prefix in P is taken into account. In our implementation, we cached the

hash values of all execution prefixes for such lookups (Technical details in Section 3.3). Suppose

that an execution 𝐸𝑚 is interesting w.r.t. code coverage implies its prefix Π𝑚 (𝑙) is also interesting

w.r.t. Definition 2.2. We could then use execution prefixes to filter out all uninteresting tests without

fully executing them. Since it takes less time to obtain execution prefixes than full executions, this

strategy can potentially boost fuzzers’ efficiency.

We now empirically validate this assumption to understand how commonly it holds in practice.

Execution prefixes can be obtained with a modified AFL++, which terminates an execution when it

reaches a predefined prefix length limit. Technical details will be shown in Section 3. Experiments

on each program are done 12 rounds with different initial seeds. For each round of experiment on a

program, we choose one seed and follow the steps below:

(1) Run AFL++ on one seed with a one-hour timeout and collect all generated tests. Identify the

length of each execution and label all coverage-increasing executions.

1
A𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡 contains duplicated items while item ordering is ignored (https://en.wikipedia.org/wiki/Multiset).
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Table 2. The Number of Selected Tests Out of All Bug-triggering Tests by Different Metrics.

libpng libsndfile libtiff libxml2 lua openssl php poppler sqlite3

Total 62 32 252 921 6 18 34 212 68

Coverage 8 6 10 377 2 4 5 52 14

Pattern 62 32 250 900 4 18 34 211 66

(2) Set the max prefix length 𝑙𝑚𝑎𝑥 as the average length of the collected executions. In principle,

as long as setting 1.0 · 𝑙𝑚𝑎𝑥 as the prefix length can retrieve nearly all interesting tests, the

selected metric for 𝑙𝑚𝑎𝑥 is eligible. Our preliminary experiments show that setting both mean

and median prefix lengths as 𝑙𝑚𝑎𝑥 are qualified. In our implementation, we choose to use the

mean value because, unlike median, it does not need to track all intermediate values.

(3) Select 10 evenly distributed prefix lengths 𝑙 ∈ {0.1 · 𝑙𝑚𝑎𝑥 , 0.2 · 𝑙𝑚𝑎𝑥 , . . . , 1.0 · 𝑙𝑚𝑎𝑥 }. For each
prefix length, rerun AFL++ on the same set of tests to collect their execution prefixes. Identify

all interesting execution prefixes.

(4) Out of all coverage-increasing executions, count how many of them also have interesting

execution prefixes, i.e., the recall of coverage-increasing executions by interesting prefixes.

Figure 2 shows the average recall of coverage-increasing executions by interesting execution

prefixes. The top six curves demonstrate that for these six projects, recall rates grow exponentially

with the increase of prefix length. Short prefixes are less effective on lua and sqlite3, but longer
prefixes still do. This experimental result reveals that a short execution prefix suffices to locate

most of the coverage-increasing tests. On six out of nine projects, achieving 70% recall on average

needs prefixes ≤ 4

10
in length of the full executions, and ≤ 6

10
for libxml2. Suppose that the prefix

length to achieve a high recall is known to a fuzzer, it can partially execute most tests, while only

fully executing those with interesting prefixes.

Observation 3: Not all bug-triggering tests are coverage-increasing.

For all tests mutated from one seed, suppose that an ideal fuzzer is able to identify coverage-

increasing ones and only executes them. This fuzzer would achieve the same code coverage as

executing them all. However, finding bugs is the ultimate goal of a fuzzer. We cannot guarantee that

this ideal fuzzer can find the same number of bugs unless bug-triggering tests are also coverage-

increasing.

To find out if bug-triggering tests could also increase coverage, we run AFL++ on the same set

of programs for 48 hours, then collect all coverage-increasing tests (placed in “queue” directory)

as well as unique crash-triggering tests (placed in “crashes” directory). We then rerun AFL++ on

all these tests in order according to their creation timestamps to simulate the fuzzing process and

check if a bug-triggering test increased code coverage at their creation time.

The “Total” row in Table 2 lists the average number of bug-triggering tests found in each project.

Of those, the “Coverage” row shows the number of coverage-increasing tests. We can see that

only a small fraction of bug-triggering tests increased code coverage. In this case, executing only

coverage-increasing tests during fuzzing may miss many bugs. To address this issue, we need to

relax the restrictions on interesting executions, which should contain not only coverage-increasing
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Fig. 3. Recall of pattern-interesting executions from interesting execution prefixes.

tests but bug-triggering tests as well. We choose to use the whole execution pattern, which can

be viewed as an execution prefix with the maximum prefix length (i.e., 𝑙 = 𝑛 in Definition 2.1).

Such patterns meet all of our requirements since (1) theoretically a coverage-increasing execution

always implies its execution pattern being interesting, i.e., never being seen; (2) empirically the

“Pattern” row in Table 2 shows that most of the bug-triggering tests also have interesting patterns.

Recall Observation 2 discussed earlier, since we relaxed the scope on interesting executions,

we now need to validate if execution prefixes still have a strong connection with new execution

patterns. We run the same experiments as in Observation 2 but change target executions from

coverage-increasing to pattern-interesting. Figure 3 shows the results. Execution prefixes keep the

correlation tendency across projects but have relatively lower recall values. This is inevitable due

to our relaxations but does not affect the overall effectiveness.

As will be detailed in Section 3.4, the whole execution pattern for each execution will only be

used in the prefix search procedure of PGE. During prefix search, PGE evaluates each prefix by its

recall capability of all pattern-interesting whole executions.

Summary:The above observations empirically show the relationships between coverage-increasing

executions, bug-triggering tests, pattern-interesting full executions, and prefix-interesting execu-

tions. Figure 4 illustrates their relations pictorially. The target of our proposed PGE is to identify

prefix-interesting tests and execute fully on them instead of all tests. Note that, this figure is only

for conceptual illustration. Size ratios in the figure do not reflect their real values.

3 PREFIX-GUIDED EXECUTION
This section introduces technical details for prefix-guided execution (PGE) and how we augment a

coverage-guided fuzzer with PGE.

3.1 Fuzzing with PGE
Figure 5 shows the high-level workflow of a coverage-guided fuzzer augmented with PGE. The

three grey blocks highlight the key extensions that we make to the standard coverage-guided

grey-box fuzzing. This new workflow illustrates that the fuzzing framework has not been altered

and the PGE extension is generally applicable.

Prefix Execution is used to obtain the execution prefix of a test. Given a test and prefix length

𝑙 , this module executes the target binary and terminates it whenever the execution visits 𝑙 edges.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 75. Publication date: April 2023.
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All tests

Full pattern-interesting

Coverage-increasing Bug-triggering

Prefix-interesing

Fig. 4. Illustrative relations from observations.

Seed Selection

Seed Prefix Length 
Search

Mutation

Done

Fuzzing Loop

Y

N

Prefix Execution

Prefix Analysis
Interesting

Non-interesting

Execution 
& Monitor

Seed Pool

Prefix length

Fig. 5. Overview of a coverage-guided fuzzer augmented with prefix-guided execution.

As long as 𝑙 is smaller than the actual execution length, such early termination reduces the time

required for execution. This is a logic module that exists in the form of extra instrumentation code

in the target binaries. (See details in Section 3.2.)

Prefix Analysis is for analyzing whether or not a given execution prefix is interesting. Interesting

prefixes refer to those that have never been observed since the start of the current fuzzing loop.

Only tests showing interesting prefixes will be fully executed while tests with non-interesting

prefixes will be discarded (See details in Section 3.3).

Prefix Length Search estimates a proper prefix length for the current fuzzing loop. Recall the

observations in Section 2, different prefix lengths correspond to different recall rates of pattern-

interesting executions. When validating the observations, the concrete relationships between prefix

lengths and recalls are from the post-processing of fuzzing loops. Now, when employing them in

fuzzing, we need to learn such relationships before the start of a fuzzing process. We propose a
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Algorithm 1: Fuzzing with PGE

Input: Seeds S, Recall rate 𝑟 .

1 while ¬Abort() do
2 𝑠 ← SelectSeed(S)
3 𝑙 ← PrefixLengthSearch(𝑠, 𝑟 ) // Find a prefix length 𝑙 that can reach the recall 𝑟.

4 𝑝 ← AssignEnergy(𝑠)
5 for 𝑖 from 0 to 𝑝 do
6 𝑠′ ← Mutate(𝑠)
7 Π𝑠′ (𝑙) ← PrefixExecution(𝑠′, 𝑙) // Obtain the execution prefix of test 𝑠′.

8 if PrefixAnalysis(Π𝑠′ (𝑙)) == interesting then
9 𝐸𝑠

′ ← FullExecution(𝑠′) // If the execution prefix has never been seen.

10 if IsInteresting(𝐸𝑠′ ) then
11 add 𝑠′ to S

12 else
13 continue

sampling-based search algorithm to find an appropriate prefix length that can reach a given recall

rate. (See details in Section 3.4).

Algorithm 1 shows an algorithmic sketch of how fuzzing with PGE works. The grey boxes

highlight our extensions. The fuzzer is provided with a set of seeds S and a target recall rate

𝑟 . During each fuzzing loop (the top 𝑤ℎ𝑖𝑙𝑒 loop), a seed 𝑠 is selected from S (line 2). All tests

generated within the present fuzzing loop are derived from this seed. The fuzzer then searches

for the smallest possible prefix length 𝑙 that may reach the recall rate 𝑟 , which is implemented in

PrefixLengthSearch (line 3). An energy 𝑝 is assigned to the seed, which represents the number

of tests that will be generated according to the defined mutation operators (lines 4-6). For each new

test 𝑠′, the fuzzer partially executes the target binary, collects execution prefix Π𝑠′ (𝑙) of length 𝑙

(line 7), and goes to different branches:

(1) If Π𝑠′ (𝑙) is interesting, i.e., having never been seen in the current fuzzing loop, the fuzzer

invokes the normal execution and monitor procedures to, e.g., add 𝑠′ to S if it increases code

coverage, or cache 𝑠′ if it results in a unique crash/hang. (lines 8-11)

(2) Otherwise, the fuzzer continues with the next test. (line 13)

According to the observations from Section 2, only a tiny fraction of tests explored in a fuzzing

loop are interesting, i.e., coverage-increasing or bug-triggering. If there were an ideal procedure

that could select interesting tests without any execution overhead, a fuzzer, when equipped with

such a procedure, could be dramatically more efficient. Such an ideal procedure certainly does not

exist. PrefixExecution and PrefixAnalysis are designed to obtain a practical instance of such

a procedure with partial execution overhead. For each test with an interesting execution prefix,

the execution overhead increases from FullExecution to "PrefixExecution + FullExecution";
while for each test with an uninteresting execution prefix, the execution overhead decreases from
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void 
__sanitizer_cov_trace_pc_guard(uint32_t *guard) {

  __afl_area_ptr[*guard]++;

}

void 
__sanitizer_cov_trace_pc_guard(uint32_t *guard) {

  __afl_area_ptr[*guard]++;

  // Update the global prefix counter.
  __afl_prefix_cntr++; 

  // Terminate the execution 
  // when reaching the given prefix length.
  if (__afl_prefix_cntr == __afl_prefix_len)    
    _exit(0);
}

(a) Original AFL instrumentation code

(b) Extended AFL-PGE instrumentation code

Fig. 6. Original and extended AFL++-PGE instrumentation codes for edge coverage.

FullExecution to PrefixExeuction. The efficacy of prefix-guided execution critically depends

on the proportion of interesting prefixes.

As will be shown in the evaluation, for most generated tests, AFL++ with PGE will execute the

second branch above, i.e., discarding the tests. A large proportion of uninteresting prefixes make

the fuzzer discard most tests without fully executing them, thus improving fuzzing efficiency.

3.2 Prefix Execution
Given a prefix length 𝑙 , PrefixExecution is able to terminate the target binary when it visits 𝑙

edges. This is achieved by augmenting the standard coverage-tracing instrumentation. Next, we will

use AFL++ as the target fuzzer to show how to support prefix execution in AFL++ instrumentation.

We use the “trace-pc-guard” mode in AFL++ for edge coverage tracing. This mode is back-

ended by LLVM SanitizerCoverage [LLVM team 2021], which can insert calls to user-defined

functions at the level of basic block edges. Figures 6 (a) and (b) show, respectively, the user-defined

functions used in AFL++ and AFL++-PGE. In AFL++, edge coverage is reported by calling the

function __sanitizer_cov_trace_pc_guard() with a unique identifier guard to increment the

corresponding entry in __afl_area_ptr coverage map.

To count the number of edges visited, the extended instrumentation code increments a global

counter __afl_prefix_cntr which is initialized to 0 at the start of an execution. The target

prefix length is passed to __afl_prefix_len via a shared memory between the fuzzer and the

target binary. When __afl_prefix_cntr reaches the limit specified by __afl_prefix_len, the
ongoing execution will be terminated. At this moment, the coverage map __afl_area_ptr stores

the execution prefix.

Note that the extended AFL++-PGE instrumentation code also supports full execution by set-

ting __afl_prefix_len=-1, making the termination code unreachable. So, PrefixExecution and

FullExecution in Alg. 1 in fact share the same instrumented target binary.
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Algorithm 2: Prefix Length Search

Global Config: Sampling ratio 𝑠𝑟 .

Input: Seed 𝑠 , Recall rate 𝑟 .
Output: Prefix length 𝑙 .

/* (1) Sampling tests with ratio 𝑠𝑟 */

1 𝑝 ←− 𝑠𝑟 · AssignEnergy(s)
2 inputCache←− [∅ . . . ∅]𝑝
3 for 𝑖 from 0 to 𝑝 do
4 inputCache[𝑖] ←−Mutate(s)

/* (2) Identify if each full execution is interesting or not, and record average execution

length. */

5 arrFull, avgLen←− BatchPrefixExecution(fullMap, inputCache, −1)
/* (3) Binary search the minimal prefix length that reaches target recall 𝑟. */

6 left←− 0

7 right←− avgLen

8 𝑙 ′ ←− right, 𝑙 ←− −1
9 while left < right do
10 InitializeHashMap(prefixMap)

11 arrPrefix, _←− BatchPrefixExecution(prefixMap, inputCache, 𝑙 ′)
12 if CalculateRecall(arrFull, arrPrefix) ≥ 𝑟 then
13 right, 𝑙 ←− 𝑙 ′

14 else
15 left←− 𝑙 ′

16 𝑙 ′ ←− (left + right) / 2
17 return 𝑙

3.3 Prefix Analysis
We use a global hashmap prefixMap to record all prefixes that have been observed in the current

fuzzing loop. For each new execution prefix, PrefixAnalysis first calculates its hash
2
value to

index prefixMap: If the indexed entry is 1, it returns non-interesting; if the indexed entry is 0,

it sets it to 1 and returns interesting. Note that, for every newly selected seed, prefixMap is

emptied and rebuilt, which is due to the fact that the coverage map changes over time and the

proper prefix length for the same seed may change accordingly. Because prefix lengths are not

identical for different seeds, it is less meaningful to share prefixMap among them.We also use

another such hashmap fullMap to record all pattern-interesting full executions. Since interesting

full executions can be shared across seeds, different from prefixMap, the fullMap is only initialized
in the beginning of fuzzing.

2
We use the MurmurHash3 [Appleby 2016] hash function supported by AFL++.
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Algorithm 3: BatchPrefixExecution
Input: hashMap, inputCache, prefix length 𝑙 .
Output: An array of interestingness arrIntsg, average execution length avgLen.

1 𝑝 ←− LengthOf(inputCache)

2 arrIntsg←− [0 . . . 0]𝑝
3 avgLen←− 0

4 for 𝑖 from 0 to 𝑝 do
5 Π𝑖 (𝑙), len←− PrefixExecution(inputCache[𝑖], 𝑙 )
6 avgLen←− avgLen + len
7 ℎ𝑖 ←− Hash(Π𝑖 (𝑙))
8 if hashMap[ℎ𝑖 ] == 0 then
9 hashMap[ℎ𝑖 ] ←− 1

10 arrIntsg[𝑖] ←− 1

11 else
12 arrIntsg[𝑖] ←− 0

13 avgLen←− avgLen / 𝑝
14 return arrIntsg, avgLen

3.4 Prefix Length Search
To benefit from prefix-guided execution, a proper prefix lengthw.r.t. target recall 𝑟 should be learned
before fuzzing starts. The recall 𝑟 describes the capability of a prefix in selecting interesting tests.

A prefix length with higher recall implies that it is likely to select more interesting tests. However,

for a recall 𝑟 , the ground-truth minimal prefix length can only be learned by fully executing all

candidate tests, thus it has no practical value.

To practically estimate a proper prefix length, we propose a sampling-based search algorithm.

Instead of running all tests, the algorithm samples a tiny fraction, say 5%, runs them both fully and

partially, and learns the recall capabilities of different prefix lengths. Alg. 2 details the prefix length

search algorithm. It consists of three main stages:

(1) Same as common fuzzing procedure, an energy is assigned to the given seed but being reduced

by a factor 𝑠𝑟 (line 1). Tests from 𝑝 times mutations are then cached (lines 2-4).

(2) Before performing prefix length search, the interestingness of each full execution is learned

via BatchPrefixExecution with prefix length 𝑙 = −1 (recall __afl_prefix_len=-1 in

Section 3.2). The hashmap fullMap records hashes of all visited executions. arrFull is a

binary array of size 𝑝 , where arrFull[𝑖] = 1 indicates inputCache[𝑖] being interesting.

avgLen is the average execution length.

(3) From 0 to avgLen, we binary search for the minimal prefix length that reaches the target recall

𝑟 . During each round of search, prefixMap is initialized first. With the same prefix length

𝑙 ′, we learn the interestingness of each execution prefix via BatchPrefixExecution. The

binary array arrPrefix stores such information just as arrFull. Function CalculateRecall
calculates the recall rate of 𝑙 ′. The final prefix length 𝑙 will be updated to 𝑙 ′ when its recall

rate is no less than 𝑟 .
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Function BatchPrefixExecution is described in Alg. 3. For each of the tests (line 4), it first gets

the execution prefix of length 𝑙 (full execution when 𝑙 = −1). The hash of the execution prefix is

calculated (line 7) to index the given hashmap (line 8). If the indexed entry is 0, i.e., this is a new
prefix, mark it as seen (line 9) and set arrIntsg[𝑖] to 1 (line 10). Otherwise, set arrIntsg[𝑖] to
0, i.e., non-interesting (line 12). The variable avgLen accumulates execution length (line 6) and

reports the average value finally (line 13). The returned array arrIntsg records whether execution

prefixes of tests are interesting or not.

Function CalculateRecall calculates the recall as follows:

𝑟 =

∑𝑝−1
𝑖=0
(arrFull[𝑖] ∧ arrPrefix[𝑖])∑𝑝−1

𝑖=0
arrFull[𝑖]

.

Intuitively, this formula calculates to what percentage the 1’s in arrFull are also marked as 1 in

arrPrefix.

4 EVALUATION
This section details our extensive evaluation on PGE to demonstrate its effectiveness in improving

fuzzing performance. Our evaluation will answer the seven research questions as shown below.

The first three RQs are module-only evaluations on the key component PrefixLengthSearch,

which adds extra fuzzing overhead. The rest of the RQs focus on PGE’s overall performance.

RQ1. Accuracy of prefix length estimation at different sampling ratios,

RQ2. Overhead of the PrefixLengthSearch module,

RQ3. Distributions of prefix length on different recall settings,

RQ4. Early terminated tests as a percentage of all tests,

RQ5. Ratio of executing interesting tests to all full executions,

RQ6. Effectiveness of fuzzing in terms of bug finding, and

RQ7. Effectiveness of fuzzing in terms of code coverage.

Experimental Setup. We used AFL++ 4.01c [Fioraldi et al. 2022], the latest version at the time of

writing, as the reference fuzzer to study the benefits of PGE. We refer to our augmented AFL++

as AFL++-PGE. We chose to use the most recent fuzzing benchmark Magma v1.2 [Hazimeh et al.

2020], the latest version at the time of writing. Magma consists of 21 programs from nine popular

real-world projects, which were selected for their diverse functionalities. Table 3 details these

targets. Due to our implementation limitation, we cannot support persistent fuzzing and thus all

persistent targets such as 𝑝𝑑 𝑓 _𝑓 𝑢𝑧𝑧𝑒𝑟 are using AFL driver with 𝑁 = 1.

To test PGE’s effectiveness against other fuzzing throughput boosters, we compare it with HeX-

cite [Nagy et al. 2021], the state-of-the-art coverage-guided tracer for coverage-guided fuzzers. HeX-

cite improves fuzzing throughput by restricting instrumentation overhead to coverage-increasing

tests only. It extends Untracer [Nagy and Hicks 2019] with the support of edge coverage.

We performed our experiments on two servers, each equipped with an AMD Ryzen Threadripper

3990X 64-Core 2.9GHz CPU and 256 GB RAM, and running Ubuntu 20.04.3 LTS. Following Klees

et al.’s [Klees et al. 2018] standard we performed each fuzzing campaign for 48 hours and repeated

it 12 times.
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Table 3. Magma targets.

Target Drivers Version File type

libpng libpng_read_fuzzer 1.6.38 PNG

libsndfile sndfile_fuzzer 1.0.31 Audio

tiff_read_rgba_fuzzer,

libtiff

tiffcp

4.3.0 TIFF

xml_read_memory_fuzzer,

libxml2

xmllint

2.9.12 XML

lua lua 5.4.3 LUA

asn1, asn1parse, bignum, Binary
openssl

server, client, x509

3.0.0

blobs

json, exif, parser,

php

unserialize

8.1.0alpha3 Various

pdf_fuzzer, pdfimages,

poppler

pdftoppm

21.07.0 PDF

sqlite3 sqlite3_fuzz 3.37.0 SQL

Fig. 7. Estimation accuracy of different sampling ratios.
Fig. 8. Achieved recall vs. target recall with

sampling ratio 5%.

4.1 RQ1: Accuracy of Prefix Length Estimation at Different Sampling Ratios.
Given a target recall, PrefixLengthSearch simulates fuzzing with sampling data points to estimate

an appropriate prefix length that can achieve it. To understand what sampling ratio is required for

an accurate estimate, for each program and a target recall, we

(1) randomly select a seed,

(2) set the sampling ratio 𝑠𝑟 = 100% to get the ground truth prefix 𝑝𝑔𝑡 ,

(3) set 𝑠𝑟 again from 1% to 50% with step 2% and estimate the prefix 𝑝𝑖 , and

(4) for each 𝑝𝑖 , calculate its normalized distance to 𝑝𝑔𝑡 with 𝑑𝑖 =
|𝑝𝑖−𝑝𝑔𝑡 |

𝑝𝑔𝑡
.
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We select 6 recalls spanning evenly from 0% to 100%, namely 10%, 30%, 50%, 70%, and 90%. Each

experiment is repeated 12 times and we report the averaged results across programs in Fig. 7.

A higher sampling ratio indicates a more precise approximation of prefix length but a higher

overhead due to the increased number of tests. When 𝑠𝑟 > 5% the distance to the ground truth

prefix decreases slowly for all recalls. For example, extending 𝑠𝑟 from 5% to 20% only reduces

the distance in less than 0.05 · 𝑝𝑔𝑡 . Since higher 𝑠𝑟 indicates higher overhead, we conclude that
𝑠𝑟 = 5% is a good balance between the estimation accuracy and overhead. In our implementation of

AFL++-PGE, we set 𝑠𝑟 = 5% as default.

In order to understand whether or not PGE can maintain target recalls with sampling rate 5%,

for each target recall we reuse the above experiment meta-data as follows:

(1) estimate the prefix length 𝑝 with 5% sampled executions,

(2) for all executions, count the number of pattern-interesting full executions 𝑁𝑓 𝑢𝑙𝑙 ,

(3) for all executions, collect their prefixes of length 𝑝 and then count the number of interesting

prefixes 𝑁𝑝𝑟𝑒 ,

(4) and calculate the true achieved recall rate

𝑁𝑝𝑟𝑒

𝑁𝑓 𝑢𝑙𝑙
.

Fig. 8 shows the distribution of achieved recalls on all programs. The X-axis refers to the target

recall set for PGE and the Y-axis is the achieved recall. Each box shows the distribution of achieved

recalls on all programs. We can find that for every target recall, PGE with 5% sampling rate can

always achieve it in more than 75% of cases. The short length of each box indicates that the

achieved recalls are concentrated around the target recalls. Overall, PGE with 5% sampling rate has

successfully searched for proper prefixes.

4.2 RQ2: Overhead of Prefix Length Search

Fig. 9. Per-program relative overhead of

PrefixLengthSearch in 48h.

Fig. 10. Distributions of prefix lengths and proportion

of seeds with prefix.

Since prefix length search, i.e., function PrefixLengthSearch, brings extra overhead to the

fuzzing loops, we first need to understand its cost in time against the overall fuzzing overhead. If

AFL++-PGE took much time in searching for a prefix length, even though it could benefit from

prefix execution, its overall performance would still be severely affected. To answer this question,

we recorded time spent executing PrefixLengthSearch during the fuzzing campaigns.

AFL++-PGE needs an extra input parameter, recall rate 𝑟 , for guiding PrefixLengthSearch. We

select 6 different recalls spanning evenly from 0% to 100%, namely 𝑟 = 10%, 30%, 50%, 70%, and 90%.
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For each target program, we ran AFL++-PGE with different recalls and averaged their Pre-

fixLengthSearch time. The final averaged overhead is reported in Fig. 9. The last bar in Fig. 9

shows that during 48 hours of fuzzing campaign, the average time spent executing PrefixLength-

Search is less than 5%, approximately two hours. For most programs, PrefixLengthSearch

overhead is negligible. Projects libpng, openssl and php have relatively larger overhead but all

below 10%. Overall, the extra overhead from PrefixLengthSearch did not hinder AFL++-PGE’s

efficiency.

4.3 RQ3: Distributions of Prefix Length on Different Recall Settings
Prefix length is crucial for the efficiency of PrefixExecution. Intuitively, shorter prefix length

means a faster PrefixExecution. Understanding what the distributions of prefix length would be

on different recall settings is thus essential to understanding the overall performance of AFL++-PGE.

For each trial on a program, we logged the searched prefix lengths and execution lengths. Note

that, for some seeds, PrefixLengthSearch may return −1 meaning that there is no effective prefix

length and the fuzzer should continue with the original FullExecution for this seed. This is because

sometimes even the maximal prefix (i.e., average full execution length) cannot achieve the target

recall. For seeds with effective prefix length, we average their relative prefix lengths w.r.t. execution
lengths on the program-level granularity. Distributions of relative prefix lengths are shown as the

solid boxes in Fig. 10. As expected, a higher recall needs larger prefix lengths. We also show the

proportion of seeds with effective prefix length as the hollow boxes in Fig. 10. Inversely, the number

of seeds with effective prefix length is less for a higher recall. For instance, when targeting the 50%

recall rate, on average more than 45% seeds can be run with PrefixExecution, among which the

searched prefix lengths are approximately one-third to full execution lengths. Although smaller

recall rates come with shorter prefix lengths, they by design have higher probabilities of missing

interesting tests. Section 4.6 and 4.7 will show the trade-off.

Fig. 11. Percentage of early terminated executions in AFL++-PGEs.
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Fig. 12. AFL++-PGEs’ ratios of executing coverage-increasing tests to all full executions relative to AFL++.

Each ratio is calculated by #coverage-interesting tests / #full executions. Each solid bar indicates that the

corresponding AFL++-PGE has a significantly higher ratio than AFL++ (i.e., Mann-Whitney U test 𝑝 < 0.05).

4.4 RQ4: Early Terminated Tests as A Percentage of All Tests
With prefix-guided execution, a fuzzer saves execution time by only partially executing tests.

We now aim to answer how many tests would be early terminated by AFL++-PGEs. An early

terminated test means that it has been only partially executed. Fig. 11 shows the mean ratios of

early terminated executions per benchmark. We can observe that lower recall settings have a

relatively higher percentage of early terminated tests. Intuitively, a lower recall allows PGE to

search for a shorter prefix, which is less sensitive compared to longer prefixes and thus results in

more early terminated tests. AFL++-PGE with recall 10% early terminated more than 90% tests on

programs “asn1”, “json”, and “unserialize”. As will be shown in Section 4.6 and 4.7, such a low recall,

however, enables PGE to discover more bugs and achieve higher coverage on these benchmarks.

Averagely, AFL++-PGEs with different recalls have 40% to 60% of tests being early terminated. For

the fully executed tests, the majority of them are from seeds where PGE does not find effective

prefixes.

4.5 RQ5: Ratio of Executing Interesting Tests to All Full Executions
We have shown in Section 2 that most of the fuzzer-generated tests are not interesting, i.e., in the

first hour of fuzzing, only 0.46% tests are coverage-interesting. This observation motivated our PGE

design. Ideally, PGE should be more concentrated than a vanilla fuzzer on executing interesting

tests. To measure such concentration, we define the interesting ratio as follows:

𝑟 =
#coverage-increasing tests

#fully executed tests

.

For AFL++, all tests are fully executed. In AFL++-PGEs, only partial tests are fully executed since

many of the generated tests are early terminated by PGE. We calculate the interesting ratios for

each fuzzer on each program and average the ratios across all trials. We use Mann-Whitney U-test
to measure the statistical significance compared to AFL++. Fig. 12 shows the mean relative ratios
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of AFL++-PGE to AFL++ on each program. We can see that on 18 out of 21 programs, at least

one of the AFL++-PGEs has a significantly higher interesting ratio than the vanilla AFL++. On

12 out of 21 programs, all AFL++-PGEs have significantly higher interesting ratios. For programs

“libpng_read_fuzzer”, “x509”, “json”, “exif”, “unserialize”, and “parser”, AFL-PGEs have 3x to 11x

higher interesting ratios.

Note that, the interesting ratios do not directly reflect the effectiveness of the fuzzers. For example,

although AFL++-PGE-r90 has a relatively low ratio on “sqlite3”, as shown in Section 4.6, AFL++-

PGE-r90 can find 3 bugs on it while the vanilla AFL++ can only find 1 bug. The main reason for the

relatively low interesting ratios of AFL++-PGE on some programs is that after 48 hours of fuzzing,

AFL++-PGEs saturate on some programs, which leads to a significant increase in the total number

of full executions, while the increase in coverage is subtle due to saturation, resulting in a less

significant interesting ratio 𝑟 . As shown in Section 4.3, PGE can not always find effective prefix.

For these programs, PGEs have turned back to the normal fuzzing procedure on some seeds, which

results in the same ratios on these seeds.

4.6 RQ6: Bug-Finding Evaluation
The ability to discover bugs is the golden metric for fuzzing performance. We evaluate the bug

detection capability of each fuzzer with bug survival time, which is proposed in the Magma. This

metric uses the time required to trigger a bug to measure bug-finding speed. Due to the highly-

stochastic nature of fuzzing, the time-to-bug might differ dramatically across repeated attempts. To

mitigate the high variations in bug discovery time, Magma recommends the use of survival analysis
to infer how long a bug “survives” in a fuzzing campaign. It adopts Wagner’s approach [Wagner

2017] and uses the Kaplan-Meier estimator [Kaplan and Meier 1958] to estimate a bug’s survival

time, i.e., staying undiscovered, within a given time (48 hours in our evaluation). A smaller survival

time means better fuzzing performance. We also use the log-rank test [Herrera et al. 2021; Mantel

et al. 1966] to statistically compare bug survival times. The log-rank test’ 𝑝-value<0.05 implies

statistical significance. Table 4 summarizes the bugs found in Magma and the mean survival time.

We omit programs when none of the fuzzers was able to find any bugs in them and bugs when all

fuzzers were able to find them without statistical significance. Due to HeXcite’s lack of support for

the persistent mode that most programs use, we were only able to run it on five programs.

Versus AFL++: In total, AFL++ was able to find 25 bugs and AFL++-PGEs uniquely discovered 10

more. Specifically, AFL++-PGE with recall 10%, 30%, 50%, 70%, and 90% covered 4, 6, 5, 2, and 7 more

bugs than vanilla AFL++. Of all these bugs
3
, AFL++-PGEs were faster than AFL++ respectively on 8,

11, 9, 9, and 11 of them, and slower respectively on 5, 6, 4, 3, and 2 of them. Overall, AFL++-PGE-r90

was the best in terms of bug-finding ability.

An interesting fact is that a very low recall still has a strong ability in discovering bugs. For

instance, AFL++-PGE with recall 30% triggered 29 bugs across all projects and uniquely discovered

bugs “XML002” and “PDF014 (pdf_fuzzer)” that no other fuzzers did. Intuitively, a lower recall

indicates that the searched prefix length has a higher probability of missing interesting tests.

However, on one hand, we observed from Magma’s intermediate logs that for nearly all bugs, if

being triggered, would be triggered more than once. Suppose that for some bug, there are multiple

triggering tests generated during fuzzing. Even if each single test has a low probability to be

executed, the probability that this bug being triggered at least once is still high according to the

chain rule [Schum 2001] in probability theory. But the triggering time might be delayed. For

example, AFL++-PGE-r10 triggered “PHP009” much later than many others. On the other hand,

3
When we compare AFL++-PGE-rXX with AFL++, only bugs triggered by at least one of these two fuzzers are included.
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Table 4. Mean survival time in 48 hours. Bugs that have never been found are marked by “⊤”. Survival times

either statistically better than AFL++ (𝑝-val < 0.05) or uniquely identified by AFL++-PGE are highlighted in

green. “✗” means the program is incompatible with the fuzzer.

AFL++-PGE

Program Bug AFL++ r10 𝑝-val r30 𝑝-val r50 𝑝-val r70 𝑝-val r90 𝑝-val HeXcite 𝑝-val

PNG001 ⊤ ⊤ – ⊤ – 48h – ⊤ – 45h – ✗ –

libpng
PNG007 31h 19h 0.08 6h 0.00 8h 0.00 10h 0.00 9h 0.00 ✗ –

SND001 0.4h 0.2h 0.14 0.2h 0.43 0.3h 0.62 0.3h 0.58 0.4h 0.77 47h 0.00

SND005 0.9h 1h 0.60 2h 0.73 1.0h 0.54 0.5h 0.01 0.7h 0.22 0.8h 0.48libsndfile
SND024 0.6h 0.4h 0.01 0.2h 0.00 0.2h 0.00 0.3h 0.00 0.4h 0.05 ⊤ –

TIF002 38h 47h 0.05 ⊤ – ⊤ – 45h 0.17 47h 0.04 ✗ –libtiff-

tiff_read_rgba TIF008 42h ⊤ – 47h 0.23 ⊤ – ⊤ – ⊤ – ✗ –

TIF006 22h 32h 0.13 38h 0.02 32h 0.21 39h 0.01 36h 0.08 18h 0.81

TIF007 0.1h 0.1h 0.45 0.1h 0.17 0.1h 0.64 0.0h 0.88 0.0h 0.40 32h 0.00libtiff-tiffcp

TIF014 2h 1h 0.22 2h 0.02 2h 0.16 1h 0.29 2h 0.27 ⊤ –

XML001 1h 0.4h 0.00 0.8h 0.01 2h 0.22 1h 0.89 2h 0.47 ✗ –

XML009 2h 1h 0.13 3h 0.67 1h 0.02 0.8h 0.01 2h 0.77 ✗ –

libxml2-
xml_read_memory

XML012 ⊤ ⊤ – ⊤ – 48h – ⊤ – 48h – ✗ –

XML001 44h ⊤ – 48h 0.04 47h 0.15 47h 0.29 45h 0.55 ⊤ –

XML002 ⊤ ⊤ – 46h – ⊤ – ⊤ – ⊤ – ⊤ –libxml2-xmllint

XML009 1.0h 3h 0.03 2h 0.18 0.9h 0.86 2h 0.22 3h 0.03 ⊤ –

openssl-asn1 SSL001 ⊤ 10h – 5h – 4h – 10h – 4h – ✗ –

SSL002 0.2h 0.2h 0.00 0.2h 0.00 0.2h 0.00 0.2h 0.00 0.2h 0.00 ✗ –

openssl-server
SSL020 45h 28h 0.02 40h 0.32 41h 0.32 29h 0.02 30h 0.04 ✗ –

php PHP009 1h 13h 0.00 14h 0.00 6h 0.02 10h 0.00 3h 0.57 ✗ –

PDF008 46h ⊤ – 44h 0.95 ⊤ – 47h 0.95 45h 0.95 ⊤ –

PDF014 ⊤ ⊤ – 46h – ⊤ – ⊤ – 45h – ⊤ –

PDF018 5h 36h 0.00 27h 0.00 25h 0.00 27h 0.00 15h 0.16 ⊤ –

poppler-pdfimages

PDF021 43h 40h 0.40 39h 0.57 40h 0.63 ⊤ – 45h 0.93 ⊤ –

PDF010 2h 1h 0.11 1h 0.21 1h 0.17 0.8h 0.01 1h 0.12 31h 0.10

PDF011 45h 46h 0.95 46h 0.62 47h 0.95 44h 0.95 41h 0.55 37h 0.01

PDF018 11h 36h 0.00 28h 0.02 36h 0.02 17h 0.71 18h 0.54 ⊤ –

poppler-pdftoppm

PDF019 ⊤ 46h – 45h – 47h – ⊤ – ⊤ – ⊤ –

PDF011 ⊤ 46h – ⊤ – ⊤ – ⊤ – 44h – ✗ –

PDF014 ⊤ ⊤ – 48h – ⊤ – ⊤ – ⊤ – ✗ –

PDF018 11h 42h 0.00 37h 0.00 44h 0.00 26h 0.08 21h 0.14 ✗ –

poppler-pdf_fuzzer

PDF021 46h 41h 0.32 ⊤ – 47h 0.55 43h 0.86 44h 0.86 ✗ –

SQL012 47h ⊤ – ⊤ – 47h 0.95 ⊤ – 48h 0.95 ✗ –

SQL013 ⊤ ⊤ – 46h – 47h – ⊤ – 48h – ✗ –sqlite3
SQL020 ⊤ 45h – 44h – ⊤ – 41h – 46h – ✗ –
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Section 4.4 has shown that AFL++-PGE-r10 has the largest fuzzing throughput, which allows it to

explore some new paths within the time constraint.

Versus HeXcite: HeXcite has the fastest discovery speed on “PDF011 (pdftoppm)”. For the rest

of the 5 bugs it discovered, AFL++-PGE-r90 is faster on 3 of them. On the 5 programs it supports, it

missed 8 bugs compared to AFL++ and AFL++-PGE-r90 found 9 more bugs than it with statistical

significance. Intuitively, HexCite should be able to boost fuzzing efficiency since it improves overall

throughput. However, it does not guarantee to trace all critical edges that are important to path

exploration. As its empirical evaluation revealed, HexCite only tracks 89% of such edges, which

inevitably limits its path-discovering capability. Moreover, hit counts coverage in HexCite is limited

to loops only. Hit counts refer to edge execution frequencies. Due to its high overhead in tracking

all hit counts, HexCite focuses only on loops, which further hinders the exhaustiveness of its

exploration.

4.7 RQ7: Coverage Evaluation
Code coverage is a common and popular evaluation metric for fuzzing when ground-truth bugs are

not available. Previous work [Klees et al. 2018; Li et al. 2021] argued that higher coverage does not

necessarily indicate better bug-finding capability. Nevertheless, for the thoroughness of comparison,

we report branch coverage achieved by each fuzzer. We measure each trial’s edge coverage with

afl-showmap utility and compute the average coverage across all trials. We use Mann-Whitney

U-test to measure the statistical significance comparing to AFL++. Table 5 summarizes the coverage

results, where statistically higher coverage than AFL++ (i.e., 𝑝-value < 0.05) is highlighted in green.

Versus AFL++: As Table 5 shows, of the total 21 programs, AFL++-PGE with recall 10%, 30%, 50%,

70%, and 90% achieve statistically higher coverage than AFL++ respectively on 10, 10, 10, 10 and 11

of them, and the same on the left. Intuitively, a lower recall indicates that PGE would have a higher

probability of missing interesting tests. However, all PGEs achieve nearly the same coverage at the

end of 48h fuzzing. The main reason is that all PGEs have become saturated on these benchmarks.

No matter how many new tests are explored, the overall improvements in coverage will be subtle.

Thus, although PGE boosts the overall fuzzing speed substantially, it results in relatively small

coverage improvements. For example, for recalls 10% and 30%, although they can explore more

tests as shown in Section 4.4, their coverage performance does not surpass others. The highest

recall 90% performed the best, which is aligned with its strongest bug-finding capability as shown

in Section 4.6.

Higher coverage does not necessarily mean a stronger bug-finding capability. For instance, as

shown in Section 4.6, AFL++-PGE-r50 statistically found more bugs than AFL++ in libpng and

sqlite3, however, it achieves lower coverage than AFL++. As the bug-finding capability is the most

important measure in fuzzing, PGE’s significance in this measurement has shown its effectiveness

in boosting fuzzing performance.

Versus HeXcite: For the five programs that HeXcite supports, it has statistically lower coverage

than AFL++ on 4 of them and never outperforms AFL++. The best performing AFL++-PGE-r90

achieves higher coverage on 4 of them. Although HeXcite is able to improve fuzzing throughput

by design, as has been analyzed in Section 4.6, it trades its efficacy for speed by discarding many

instrumentations. As reported in HeXcite, it is more significant in black-box setting and achieves

nearly equivalent or worse performance on grey-box settings. Our evaluation confirmed this fact.
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Table 5. Edge coverage (%) achieved by fuzzers. Coverages statistically higher than AFL++ are highlighted in

green. “✗” means the program is incompatible with the fuzzer.

AFL++-PGE

Project Program AFL++ r10 MWU r30 MWU r50 MWU r70 MWU r90 MWU HeXcite MWU

libpng libpng_read_fuzzer 24.6 24.3 0.77 24.6 0.58 24.3 0.76 24.6 0.45 24.4 0.67 ✗ –

libsndfile sndfile_fuzzer 22.2 22.1 0.94 22.1 0.89 22.2 0.61 22.2 0.57 22.3 0.22 17.3 0.00

xml_read_memory 18.5 18.2 1.00 18.3 1.00 18.4 1.00 18.5 0.59 18.6 0.00 ✗ –
libxml2

xmllint 16.3 15.9 1.00 16.1 1.00 16.2 1.00 16.2 1.00 16.2 0.96 11.3 0.00

lua lua 81.5 80.6 0.93 80.9 0.94 81.6 0.27 81.4 0.56 81.3 0.60 ✗ –

asn1 10.5 11.7 0.00 11.8 0.00 11.8 0.00 11.8 0.00 11.8 0.00 ✗ –

asn1parse 1.4 2.0 0.00 2.0 0.00 2.0 0.00 2.0 0.00 2.0 0.00 ✗ –

bignum 1.2 1.9 0.00 1.9 0.00 1.9 0.00 1.9 0.00 1.9 0.00 ✗ –

server 15.3 16.9 0.00 16.9 0.00 16.9 0.00 16.9 0.00 16.9 0.00 ✗ –

client 15.1 17.1 0.00 17.1 0.00 17.1 0.00 17.1 0.00 17.1 0.00 ✗ –

openssl

x509 11.6 12.4 0.00 12.4 0.00 12.4 0.00 12.4 0.00 12.4 0.00 ✗ –

tiff_read_rgba 36.0 32.6 1.00 34.0 1.00 34.1 1.00 34.7 1.00 34.9 1.00 ✗ –
libtiff

tiffcp 41.0 39.8 1.00 40.1 1.00 39.6 1.00 40.4 0.89 40.4 0.91 41.0 0.23

json 0.7 1.5 0.00 1.5 0.00 1.5 0.00 1.5 0.00 1.5 0.00 ✗ –

exif 0.9 1.7 0.00 1.8 0.00 1.8 0.00 1.8 0.00 1.8 0.00 ✗ –

unserialize 1.0 1.8 0.00 1.8 0.00 1.8 0.00 1.8 0.00 1.8 0.00 ✗ –
php

parser 4.9 5.3 0.00 5.4 0.00 5.5 0.00 5.5 0.00 5.5 0.00 ✗ –

pdf_fuzzer 38.8 38.3 1.00 38.4 1.00 38.7 0.86 38.7 0.59 38.7 0.63 ✗ –

pdfimages 45.7 44.8 1.00 45.1 1.00 45.2 1.00 45.5 0.93 45.7 0.22 36.7 0.00poppler
pdftoppm 39.2 38.6 1.00 38.7 1.00 39.0 0.90 39.0 0.90 39.0 0.83 31.8 0.00

sqlite3 sqlite3_fuzz 42.6 40.3 1.00 40.3 1.00 41.3 0.98 42.4 0.53 43.3 0.11 ✗ –

4.8 Finding Bugs in Latest Applications
Evaluations on the Magma benchmark programs have already shown the superiority of AFL++-

PGE. In order to test if AFL++-PGE is able to boost AFL++’s bug-finding capability on real-world

applications, we selected 6 up-to-date programs with diverse types. All programs have been well-

fuzzed in the fuzzing community [Böhme and Falk 2020; Chen et al. 2020a; Huang et al. 2020; Wang

et al. 2020]. We used their official test suites as the initial seeds for ffmpeg, objdump, readelf, and
nm-new. Seeds for the remaining two programs are from UNIFUZZ [Li et al. 2021]. We set recall

for AFL++-PGE to 90% as suggested by our evaluations on Magma. All experiments were done on

the same environments as discussed in Section 4 with a timeout of 48 hours. Table 6 reports the

number of bugs found by each fuzzer. We manually inspected and triaged all unique crashes to

identify unique bugs. In summary, AFL++-PGE-90 discovered more bugs than AFL++ in 4 out of the

6 programs. All bugs found by AFL++ were also discovered by AFL++-PGE-r90, which means that

PGE did not miss any bugs in these real-world applications. AFL++-PGE-r90 in total discovered 28
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Table 6. Bugs detected by AFL++ and AFL++-PGE-r90.

AFL++ AFL++-PGE-r90

Target File Type Version Found New Fixed Found New Fixed

ffmpeg Video 4.4 1 0 0 1 0 0

cflow C 1.6.92 0 0 0 1 0 0

mp42aac MP4 1.6.0 2 0 0 4 2 0

objdump Binary 2.36.1 8 8 8 10 10 9

readelf Binary 2.36.1 5 5 5 5 5 5

nm-new Binary 2.36.1 8 7 7 12 11 10

Total 24 20 20 33 28 24

previously unknown bugs, 40% more than AFL++. We reported these bugs to the developers and 24

of them have already been fixed. We can thus conclude that PGE significantly improves AFL++’s

performance in finding bugs in real-world applications.

4.9 Discussion
Impact of recall in PGE. As can be learned from Sections 4.3 and 4.4, a smaller recall rate

means a shorter prefix and higher execution speed, but also means a higher probability of missing

interesting tests. As a result, we should avoid selecting a recall that is too small. On the other hand,

experimental results in Section 4.7 and 4.6 showed that higher recall did not always mean more

effective performance. For example, AFL++-PGE-r90 performed better than AFL++-PGE-r50 in

both code coverage and bug survival time. Although AFL++-PGE-r10 and r30 did not outperform

AFL++-PGE-r90 overall, they found additional bugs in xmllint and pdftoppm. In summary, it is a

trade-off to balance execution speed and bug-triggering probability. We conclude that the higher

execution speed of relatively low recall compensated its low bug-triggering probability. A proper

target recall in PGE should be neither too large nor too small. Recall 90% is the best-performing

one considering both of our measures and can be a good choice in practice.

Orthogonality of PGE to various CGF efforts. At a high level, PGE is a surrogate module

for full executions and does not affect other parts of a coverage-guided fuzzer. Algorithm 1 in

Section 3.1 has shown the algorithmic sketch for a coverage-guided grey-box fuzzer (CGF) and our

PGE extensions to it. Various CGF efforts try to improve different aspects of the fuzzing process and

share the same CGF workflow. For instance, seed scheduling schemes such as AFLFast [Böhme et al.

2017a] optimize the SelectSeed (line 2) and AssignEnergy (line 4) functions. Mutator scheduling

methods such as MOPT [Lyu et al. 2019] improve the Mutate function. AFL++ [Fioraldi et al. 2020]

integrates many advances into AFL while still maintaining the same CGF workflow. PGE does

not alter any of these optimized functions, and only conditions full executions w.r.t. their prefixes.
PGE is therefore orthogonal to these efforts. Our extensive evaluation has shown the significant

performance improvement of PGE to AFL++. We believe integration of PGE to other fuzzers will

boost their performance as well. When integrating PGE into a new fuzzer, the main efforts are

to update two components coordinately: For PrefixExecution, if the new fuzzer does not use

AFL-style instrumentation, one needs to add a global counter and a guard for prefix collection in
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the instrumentation code; For PrefixLengthSearch, mutation strategies should be aligned with

the new fuzzer.

Support of stateful fuzzing. It is crucial to find security vulnerabilities in stateful and persistent

targets such as network services. Stateful fuzzing, however, is difficult. Vanilla CGF fuzzers like

AFL++ are limited in their abilities to support stateful targets like network services. Since PGE is

built atop AFL++, it inherits this limitation. There is some interesting work that attempts to address

this limitation. One representative effort is AFLNet [Pham et al. 2020], which augments AFL to

make it state-aware. In principle, PGE could be integrated into it since AFLNet treats a message

sequence as an input seed in a normal fuzzing scenario while still maintaining state information.

Early termination in AFLNet would not lose the target state.

Compatibility to other fuzzing boosting schemes. An interesting and orthogonal boosting

approach for fuzzing is checkpoint-based resume [Song et al. 2020]. The key insight is that kernel

fuzzers frequently execute similar test cases with same prefixes. To avoid redundant prefix execu-

tions, checkpoints are used to save states for hot prefixes. All future test cases with prefixes being

cached can then resume from checkpoints. In principle, this scheme could be augmented with PGE.

The augmented fuzzer can start collecting prefixes from a resumed checkpoint and terminate a

subsequent execution when its prefix is uninteresting. Since this scheme is applied in kernel fuzzing

and PGE is initially designed for application fuzzing, it remains challenging and unknown how

PGE would perform on top of it.

Limitations and future work. PGE opens up a new and orthogonal research direction for

improving fuzzing efficiency by early terminating executions. In our current design, we make use

of the coverage information from executions as the indicator for early termination. Although it has

shown a superior performance, our current PGE cannot use a hundred percent of recall since it

would require a longer thus less effective prefix. This is mainly due to the limited expressiveness

of coverage pattern as the indicator for early termination. It would be an exciting and interesting

future work to explore other more expressive indicators such as data flows [Gan et al. 2020] and

variable states [Fioraldi et al. 2021]. Such indicators may have the potential to predict an execution’s

coverage increasingness in a much earlier stage and thus need a shorter prefix.

5 THREATS TO VALIDITY
We here discuss potential threats to the validity of our results and conclusions.

Threats to external validity. One threat to external validity is the benchmarking programs we

used for our evaluation. To reduce this threat, we chose the Magma benchmark, which consists

of 21 programs from nine real-world projects. All of them have been widely used for evaluating

fuzzers’ performance in the fuzzing community. These programs were carefully selected by the

Magma authors according to their diversity in functionality. Another threat to external validity is

the randomness in fuzzing. Due to the highly stochastic nature of fuzzing, different trials on the

same benchmark may differ significantly. To deal with this issue, we repeated all our experiments

12 times and used the log-rank test and Mann-Whitney U-test to draw statistically significant

conclusions.

Threats to conclusion validity. This threat to validity relates to the reliability of the chosen

measurements and the used statistical tests. We measured the significance of our PGE with bug-

finding capability and edge coverage. Both measurements are widely used in the fuzzing community.

For the adopted statistical tests, we followed many existing fuzzers.
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6 RELATEDWORK
Coverage-guided Greybox Fuzzing. Since the success of AFL, there is a large body of work

that incorporates techniques such as taint analysis [Aschermann et al. 2019; Chen and Chen 2018;

Chen et al. 2019; Mathis et al. 2020; Rawat et al. 2017], symbolic execution [Noller et al. 2018, 2020;

Stephens et al. 2016; Wang et al. 2018; Yun et al. 2018], static analysis [Chen et al. 2020b; Li et al.

2017; Peng et al. 2018], and deep learning [Godefroid et al. 2017; Rajpal et al. 2017; She et al. 2019;

Wang et al. 2017], to improve the performance of greybox fuzzing. However, all of them still have

to fully execute all generated tests and, to the best of our knowledge, PGE is the first extension to

greybox fuzzing for reducing execution overhead via early termination.

Improving Fuzzing Throughput. Boosting coverage collection improves fuzzing speed at tracing

level. UnTracer [Nagy and Hicks 2019] and HeXcite [Nagy et al. 2021] use coverage-guided tracing

to decrease time handling non-coverage-increasing tests. They utilize the fact that a large number of

tests are non-coverage-increasing and only instrument code regions that have never been covered.

Zeror [Zhou et al. 2020] uses a similar idea but with finer-grained coverage. INSTRIM [Hsu et al.

2018] utilizes the existence of common program structures to instrument a small fraction of basic

blocks for reconstructing coverage. However, it becomes less useful after LLVM incorporates a

similar but more efficient functionality in its PCGUARD mode [LLVM team 2021]. At the system

level, Xu. et al. [Xu et al. 2017] implement three operating primitives specialized for fuzzing to

solve the scalability bottlenecks in file I/O and system calls.

These research efforts are related to prefix-guided execution as they all target reducing overhead

introduced by fuzzing itself. PGE tackles this problem from an orthogonal and new perspective.

Reachability Prediction in Targeted Greybox Fuzzing. There is a large body of work [Chen

et al. 2018; Wüstholz and Christakis 2020; Zong et al. 2020] on guiding fuzzers toward target

locations since AFLGo [Böhme et al. 2017b]. Among them, two are particularly related to PGE as

they share a similar philosophy. FUZZGUARD [Zong et al. 2020] trains a deep learning model for

each target location and predicts if each test can reach the target location without executing them. It

hypothesizes that tests reaching the same target location have common syntactic patterns.Wüstholz.

et al. [Wüstholz and Christakis 2020] present an online static look-ahead analysis to determine

if an execution prefix can reach a target location. These two efforts both avoid unnecessary full

executions. Their effectiveness is guaranteed by the high concentration of tests in targeted greybox

fuzzing both syntactically and semantically. Although they have different application scenarios

from PGE, it is nevertheless interesting future work to explore if deep learning and static analysis

are applicable in reducing full executions for general fuzzing.

7 CONCLUSION
We have presented PGE, a novel technique for boosting greybox fuzzing’s efficiency and bug

detection. Our high-level insight is that partial test execution can help separate interesting and

non-interesting tests, thus a fuzzer can terminate those non-interesting executions early for higher

fuzzing throughput. We have empirically shown that most tests during fuzzing are non-interesting

and execution prefixes can help select interesting tests. As a proof-of-concept, we have integrated

PGE into AFL++. Our results show that AFL++-PGE improves not only AFL++’s performance, but

more importantly, also its coverage-increasing and bug-finding capability. PGE is general and, in

principle, can enhance any greybox fuzzer. This work provides a simple, effective realization, and

motivates future explorations of this direction.
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8 DATA-AVAILABILITY STATEMENT
The artifact is publicly available [Li and Su 2023]. This artifact consists of three main components: 1.

AFL++-PGE, the fuzzer which we implemented PGE on top of AFL++. 2. All experimental data that

can be used to reproduce all reported statistics in the paper. 3. Magma integration which one can

run to get all our experimental data on fuzzers. The key data reported in the paper are in Section 2

(Observation) and Section 4 (Evaluation). We provide detailed instructions to reproduce these data,

i.e., Table 1, 2, 4, 5, 6 and Figure 2, 3, 7, 8, 9, 10, 11, 12.
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