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ABSTRACT

Unstable code refers to code that has inconsistent or unstable run-
time semantics due to undefined behavior (UB) in the program.
Compilers exploit UB by assuming that UB never occurs, which
allows them to generate efficient but potentially semantically in-
consistent binaries. Practitioners have put great research and engi-
neering effort into designing dynamic tools such as sanitizers for
frequently occurring UBs. However, it remains a big challenge how
to detect UBs that are beyond the reach of current techniques.

In this paper, we introduce compiler-driven differential testing
(CompDiff), a simple yet effective approach for finding unstable
code in C/C++ programs. CompDiff relies on the fact that when
compiling unstable code, different compiler implementations may
produce semantically inconsistent binaries. Our main approach is
to examine the outputs of different binaries on the same input. Dis-
crepancies in outputs may signify the existence of unstable code. To
detect unstable code in real-world programs, we also integrate Com-
pDiff into AFL++, the most widely-used and actively-maintained
general-purpose fuzzer.

Despite its simplicity, CompDiff is effective in practice: on the
Juliet benchmark programs,CompDiff uniquely detected 1,409 bugs
compared to sanitizers; on 23 popular open-source C/C++ projects,
CompDiff-AFL++ uncovered 78 new bugs, 52 of which have been
fixed by developers and 36 cannot be detected by sanitizers. Our
evaluation also reveals the fact that CompDiff is not designed to
replace current UB detectors but to complement them.
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1 /* dump a chunk of buffer*/
2 int dump_data (int offset, int len) {
3 char *data = /* buffer head */;
4 int size = /* size of buffer*/;
5 if (offset + len > size ||
6 offset < 0 || len < 0) {
7 return -1;
8 }
9 if (offset + len < offset) {
10 return -1;
11 }
12 /* dump from data+offset
13 to data+offset+len */
14 dump(data+offset, len);
15 return 0;
16 }

Listing 1: The second if guard in line 9 got optimized away

by clang because it would only be evaluated to true when a

signed integer overflow happened.

1 INTRODUCTION

Some programming languages such as C/C++ designate a set of
code constructs as having undefined behavior (UB) to simplify the
compiler implementation. For example, the C17 standard [9] lists
211 circumstances for which it invokes undefined behavior. Ac-
cording to the standard, permissible undefined behavior results
in “ignoring the situation completely with unpredictable results”.
Compilers can assume that undefined behavior will never occur in
the program which allows many optimization opportunities. A con-
sequence of such an assumption is for code that contains undefined
behavior, different compiler implementations may generate seman-
tically different binaries. Previous study [47, 48] has shown that
undefined behaviors may cause optimization-unstable code, code
that could be unexpectedly discarded by compiler optimizations. In
this paper, we refer to code that has inconsistent semantics across
compiler implementations due to undefined behavior as unstable
code.

Example of unstable code. Listing 1 shows an example of un-
stable code, where the if guard in line 9 tries to handle possible
integer overflow. But offset+len can never be less than offset
unless undefined behavior, i.e., signed integer overflow, occurs.
According to the standard, compilers can do arbitrary optimiza-
tions with the assumption that undefined behavior never occurs.
The consequence is that an optimizing compiler (e.g., clang-O2)
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optimizes away the second if branch (lines 9-11) while a less op-
timizing compiler (e.g., clang-O0) keeps it. That means the com-
piled binaries have different semantics. For example, if we call
dump_data(INT_MAX-100, 101), the optimized binary will dump
the buffer starting from data+INT_MAX-100 and return 0, while
the unoptimized binary will dump nothing and return -1. On one
hand, this issue leads to a security hole in the optimized binary as a
large range of illegal memory data could be dumped. On the other
hand, it breaks the functional correctness of the code as its binaries
compiled by different compilers may produce divergent outputs.

Our approach. From the above example, we can observe that
unstable code leads to different execution semantics across compi-
lations once undefined behavior has been triggered. This conforms
to the standard that compilers can in principle do arbitrary opti-
mizations on such erroneous code. In this paper, we make use of
this fact and propose a simple, straightforward, yet effective ap-
proach for finding unstable code. Our approach involves three steps.
First, compile the target program with different compiler imple-
mentations to get a set of binaries. We consider different compilers
and optimizations as different compiler implementations. For ex-
ample, gcc-O0, gcc-O2, and clang-O2 are three different compiler
implementations. Second, run these binaries on the same set of test
inputs and collect their outputs. Finally, compare outputs produced
by different binaries on the same input and report discrepancies.
For a program with deterministic output, i.e., repeated executions
of the program on the same input always yield the same output,
output discrepancy over the same input implies the presence of
unstable code. We call our approach compiler-driven differential
testing (CompDiff). For the example in Listing 1, CompDiff can
successfully detect the issue because of the divergent outputs on
the same input. For non-deterministic or multi-threaded programs,
they may have non-deterministic internal execution traces. But
as long as they have deterministic output, they can be analyzed
with CompDiff. Note that, CompDiff assumes compiler imple-
mentations are bug-free. Compiler bugs, which are rare for mature
compilers [30], may indeed cause divergent outputs and thus be
caught by CompDiff. As will be shown in our evaluation, com-
piler bugs are rarely encountered in real-world software. Once it
happens, developers are willing to diagnose and report it.

CompDiff’s design also covers bugs that are not due to undefined
behavior. As long as a bug results in output discrepancy across
compiler implementations, it will be detected by CompDiff. Our
evaluation will show that CompDiff indeed finds real bugs that are
not undefined behavior. We consider this as an additional benefit
of CompDiff.

Existing approaches. Industry and academics have proposed a
plethora of static and dynamic tools for findings frequently occur-
ring undefined behaviors such as buffer overflow, integer overflow,
division by zero, etc. Static tools [12, 31, 48] analyze source code
without executing it to detect certain types of errors. They typically
build upon heuristics and suffer from both false positives and false
negatives. Dynamic tools [6, 33], on the contrary, perform analy-
sis of concrete executions and normally incur no false positives.
Sanitizers such as AddressSanitizer (ASan) [42], UndefinedBehav-
iorSanitizer (UBSan) [15], and MemorySanitizer (MSan) [43] sup-
ported by compilers are widely used in practice. They insert checks

Table 1: Scopes of sanitizers and CompDiff.

Approach Scope

ASan Memory errors (e.g. buffer-overflow)
UBSan Miscellaneous UBs (e.g. division-by-zero)
MSan Use of uninitialized memories.

CompDiff A diverse range of UBs.

into necessary program locations to detect undefined behaviors
at run-time. For the example in Listing 1, UBSan would insert a
check around each offset+len to verify whether or not its value
exceeds INT_MAX. Thanks to their strong bug detection ability, san-
itizers have become de facto state-of-the-art for discovering UBs,
especially in fuzzing.

Sanitizers cover many frequently occurring UBs. Each sanitizer
is designed for certain classes of UBs. Table 1 lists scopes of three
widely used sanitizers and our CompDiff. On one hand, CompDiff
covers a broader range of UB even than the combination of these
sanitizers. The reason is that our design stems from unstable code,
a common consequence of UB. Sanitizers contrarily design cus-
tomized checks for each kind of UB. Since not all UBs have appli-
cable checks, some UBs cannot be detected by sanitizers. We will
show in Section 2 three examples where sanitizers fail to detect
them. On the other hand, sanitizers have high bug coverage for
UBs that they specialize in. CompDiff, however, may miss many of
them. We argue that CompDiff is not to replace sanitizers but to
complement them by covering extra UBs.

To improve CompDiff’s practicality and detect unstable code in
real-world software, we integrate CompDiff into AFL++ [17], the
most widely-used general-purpose fuzzer. Our evaluation shows
that, on the Juliet benchmark tests, CompDiff uniquely identified
1,409 bugs that sanitizers failed to. On 23 popular open-source
C/C++ projects, CompDiff-AFL++ discovered 78 new bugs, 66 of
which were confirmed, and 52 were fixed by the developers. Of
these new bugs, 36 were not detected by sanitizers. Our evaluation
also confirms the strong detection ability of sanitizers on certain
classes of bugs. In summary, our contributions are as follows:

• We propose CompDiff, a simple, straightforward, yet effective
approach for finding unstable code.

• We integrate CompDiff into the popular fuzzer AFL++.

• We evaluate CompDiff on both benchmark and real-world
programs. The results show that CompDiff significantly com-
plements sanitizers.

2 ILLUSTRATIVE EXAMPLES

This section illustrates three real-world examples, which we use
to demonstrate how CompDiff enables the discovery of unstable
code and why sanitizers fail to detect them.
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1 int display_debug_frames (...) {
2 char *saved_start=/*point to object A*/;
3 char *look_for =/*point to object B*/;
4 ...
5 if (look_for <= saved_start) {...}
6 else {...}
7 }

Listing 2: A pointer comparison UB found by CompDiff in

binutils/dwarf.c. The if check in line 5 is evaluated differently

(either true or false) across compiler implementations (https:

//sourceware.org/bugzilla/show_bug.cgi?id=27836).

1 char * GET_LINKADDR_STRING(int8_t *p) {
2 static char buffer[BUF_SIZE];
3 /* write *p to buffer */
4 ...
5 return buffer;
6 }
7 void arp_print(...) {
8 ...
9 ND_PRINT("who-is %s tell %s",
10 GET_LINKADDR_STRING(p1),
11 GET_LINKADDR_STRING(p2));
12 ...
13 }

Listing 3: An example of unstable code simplified from

tcpdump/print-arp.c. The two calls to GET_LINKADDR_STRING
are arguments to the function ND_PRINT (https://github.com/

the-tcpdump-group/tcpdump/issues/919).

Example 1: Invalid pointer comparison. Listing 2 shows a piece
of unstable code found by CompDiff in Binutils. The pointer com-
parison in line 5 is UB as look_for and saved_start are pointing
to different objects. The standard [9] (§6.5.8) describes that such
undefined behavior happens when “Pointers that do not point to
the same aggregate or union (nor just beyond the same array object)
are compared using relational operators.” None of the sanitizers can
detect this kind of UB because it remains unknown how to design
a proper check for it. CompDiff can easily detect this issue be-
cause the if guard will be evaluated differently across compiler
implementations and thus divergent outputs will be observed.

Example 2: Evaluation order of subexpressions with conflict

side effects. Listing 3 shows an example of unstable code in the
well-known network packet analyzer Tcpdump [21]. The function
ND_PRINT (line 9) dumps formatted network information. In this
code snippet, developers try to dump fields p1 (line 10) and p2 (line
11) by calling the function GET_LINKADDR_STRING twice. These two
calls are also arguments to the function ND_PRINT. According to
the standard, compilers can evaluate function arguments in any
order. However, “If there are multiple allowable orderings of the
subexpressions of an expression, the behavior is undefined if such an

1 std::ostream& CanonMakerNote::print0x000c(
2 std::ostream& os, const Value& value) {
3
4 std::istringstream is(value.toString());
5 uint32_t l;
6 is >> l;
7 return os << std::hex
8 << ((l & 0xffff0000) >> 16);
9 }

Listing 4: A use of uninitialized variable in exiv2 where l
stays uninitialized even after line 6 when is is an empty

string (https://github.com/Exiv2/exiv2/issues/1717).

unsequenced side effect occurs in any of the orderings.” [9] (§6.5.0).
This example matches the definition of this undefined behavior
and becomes unstable. First, the function GET_LINKADDR_STRING
uses a static char array buffer to store the resulting string. The
memory region pointed to by bufferwill be shared across function
calls. Since there are two calls to this function, the result of the first
call, which is stored in buffer, will be overwritten by the second
call. Thus in the dumped string, the two fields who-is and tell
will always be the same. Second, since the language specification
poses no restriction on the evaluation order of function arguments,
different compilers may evaluate these two GET_LINKADDR_STRING
calls in a different order. If we compile Tcpdumpwith gcc and clang
separately, the obtained two binaries will evaluate the arguments
of ND_PRINT in reverse order, leading to inconsistent dump strings.
Specifically, clang evaluates the arguments from the first to the
last, i.e., p2 will be dumped to both who-is and tell; while gcc
evaluates the arguments from the last to the first, i.e., p1 will be
dumped to both attributes.

To discover this issue, we need to have at least two compiled
tcpdumps from gcc and clang, respectively, and tests that can
reach the unstable program location. We identified this issue with
our CompDiff-AFL++ tool, where CompDiff was configured to
compile a target with multiple compiler implementations from both
gcc and clang. The back-end AFL++ generated tests that reached
the target location.

All sanitizers currently do not support the detection of this type
of issue. Extending sanitizers to support such detection requires the
design of a new checker that could examine whether or not multiple
subexpressions have side effects on conflict memory regions. It
remains unknown how to implement such a checker.

Example 3: Uninitialized memory usage. Listing 4 shows a
piece of unstable code due to the use of an uninitialized variable.
The developers might think that although the variable l is unini-
tialized, its initial random value should be overwritten in line 6
with the content in is. However, in a corner case where is is an
empty string the variable l will remain unchanged. The uninitial-
ized value will then be used for the rest of the execution, in this case
printing out to ostream. As the value of the uninitialized variable is
indeterminate [9] (§6.7.9) and depends on run-time memory layout,
different compilers and optimizations may allocate different values
to it.
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MemorySanitizer supports the detection of uninitialized memory
usage, where uninitialized values have to be used to determine code
branches, e.g., an if guard relies on an uninitialized value. To avoid
false positives, it does not support cases such as the one shown in
the example.

CompDiff-AFL++ can detect this issue because 1) the back-end
AFL++ can generate tests that cause the variable is to be empty
and thus l to be different across binaries; 2) CompDiff captures
divergent outputs.

Limitations. Although CompDiff can cover extra bugs than sani-
tizers, it cannot detect as many issues as sanitizers for certain kinds
of UBs. The reasons are twofold. First, some UBs do not lead to un-
stable code. Although compilers in theory could generate arbitrary
binaries for code having UB, they in practice may not exploit the
UB or generate semantically equivalent binaries. Second, Even if a
program contains unstable code, the erroneous behavior may not
propagate to the final outputs.

3 FINDING UNSTABLE CODE

This section details our approach to finding unstable code. Sec-
tion 3.1 formalizes unstable code and presents our proposed compiler-
driven differential testing for the detection of unstable code. Sec-
tion 3.2 demonstrates the implementation details of integrating
CompDiff into AFL++.

3.1 Compiler-Driven Differential Testing

Both C [9] and C++ [10] standards pose no requirements on how a
compiler behaves on code fragments that invoke undefined behav-
ior. A compiler implementation w.r.t. the programming language
specification can thus in principle do arbitrary transformations and
optimizations on such erroneous code fragments. Intuitively, for
a program with deterministic output, i.e., repeated executions of
the program on the same input always yield the same output, if
the binaries compiled by any two legal and correct compiler im-
plementations produce different outputs on some input, there has
erroneous code fragment in the program. We call such erroneous
code fragments leading to divergent outputs across compilations
unstable code.

To formalize unstable code, let 𝒞𝑎 and 𝒞𝑏 be any two legal com-
piler implementations. For a program 𝒫 with deterministic output,
𝒞𝑎 and 𝒞𝑏 compile program 𝒫 to binaries ℬ𝑎 and ℬ𝑏 , respectively.
With these notations, we introduce unstable code from a dynamic
testing perspective as follows:

Definition 1 (Unstable Code). 𝒫 has unstable code if there
exists an input such that executing ℬ𝑎 and ℬ𝑏 on the input produces
different outputs.

This definition shows that enumerating inputs on binaries com-
piled by all possible compiler implementations may help us to
find unstable code. Based on this intuition, we propose compiler-
driven differential testing (CompDiff) for detecting unstable code
in real-world programs. For a program 𝒫 , the general workflow of
CompDiff is as follows:

1) Find a set of legal compiler implementations 𝒞𝑖 , 𝑖 ∈ [1, 2, · · · , 𝑘].

2) Compile 𝒫 with each 𝒞𝑖 to obtain binaries ℬ𝑖 , 𝑖 ∈ [1, 2, · · · , 𝑘].

3) Find an input set ℐ for 𝒫 .

4) For each input 𝑡 ∈ ℐ , run each ℬ𝑖 on it and obtain outputs 𝑜𝑖 . If
there exists 𝑖, 𝑗 ∈ [1, · · · , 𝑘] and 𝑖 ≠ 𝑗 such that 𝑜𝑖 ≠ 𝑜 𝑗 , report
𝑡 as bug-triggering input.

The above workflow shows three key factors in CompDiff, i.e.,
compiler implementations, input set, and output examination. In
the following, we will discuss each these factors in detail.

Compiler implementations. Ideally, we could find only two com-
piler implementations that always behave differently on unstable
code. However, such ideal compilers do not exist. In practice, we
should utilize a set of concrete compiler implementations. For a
given target, there are typically plenty of metamorphic compiler
implementations. For instance, clang has hundreds of optimization
passes available for developers to choose from, which results in
a combinatorial explosion of possible compiler implementations.
Popular compilers, such as gcc [13] and clang [14], feature well-
engineered optimization levels (i.e., -O0, -O1, -O2, -O3, and -Os) for
users to choose from. For open-source C/C++ projects, developers
often use different compilers and optimization levels when devel-
oping, testing, and releasing code. Users may also freely choose
their own preferences when compiling code. These compilers and
optimization levels offer us a good collection of compiler imple-
mentations for CompDiff. The reason is twofold. First, each of
these compiler implementations uses a different set of transforma-
tions and optimizations, which increase the possibility of exploiting
unstable code across them. Second, all of these compiler implemen-
tations are widely used in real-world cases by either developers or
users. As long as CompDiff discovers a discrepancy, the issue is
likely affecting real users and thus persuading.

Input set. Since CompDiff is a dynamic testing approach, concrete
execution is required to detect bugs. One can use a test suite pro-
vided by developers or generated with existing test generation tools.
Fuzzing is one of the most popular automated testing techniques for
discovering software defects due to its simplicity and effectiveness.
By generating a tremendous amount of mutated inputs with feed-
back guidance, fuzzer is powerful in finding interesting program
paths. In this paper, we use a fuzzer as the test generation tool to
power CompDiff. Section 3.2 will demonstrate how we integrate
CompDiff into AFL++ for finding unstable code in real-world soft-
ware. Note that, CompDiff has no particular requirements on the
underlying fuzzer and is generally applicable to other fuzzers.

Output examination. Conceptually, our definition of unstable
code shows that finding them in a program requires verifying the
semantic equivalence of its compiled binaries. Full verification is
infeasible due to its complexity and undecidability [11, 38]. To prac-
tically reason about semantic equivalence, our design only concerns
final outputs of binaries on a concrete input. There are two reasons
behind our choice. First, it is easy and cost-efficient to obtain in-
put/output pairs in practice. Unlike other techniques like sanitizers,
such design requires no modification or instrumentation to the
target program. Second, it is convincing as proof of the presence of
unstable code. Since all compiler implementations are used in the
real-world, any discrepancy in the final outputs indicates that the
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Algorithm 1: CompDiff-AFL++
Input: Seed pool 𝒮 .

1 while ¬Abort() do
2 𝑠 ← SelectSeed(𝒮)
3 𝑠 ′ ← Mutate(𝑠)
4 _← Execution(𝑠 ′,ℬ𝑓 𝑢𝑧𝑧)
5 if 𝑠 ′ causes failure on ℬ𝑓 𝑢𝑧𝑧 then

6 save 𝑠 ′ to disk

7 if 𝑠 ′ increases coverage on ℬ𝑓 𝑢𝑧𝑧 then

8 add 𝑠 ′ to 𝒮

/* CompDiff: Run 𝑠 ′ on each ℬ𝑖 and examine

output consistency. */

9 for 𝑖 = 1 to 𝑘 do

10 𝑜𝑖 ← Execution(𝑠 ′,ℬ𝑖 )

11 if ! (𝑜1 = 𝑜2 = · · · = 𝑜𝑘 ) then

12 save 𝑠 ′ to disk

functional correctness of the program has been affected in at least
one compiler implementation. Unfortunately, such a design will
miss bugs when the erroneous state does not propagate to the final
output. One may argue that instead of only examining final outputs,
we can check programs’ intermediate results, e.g., return values
from all functions, to extend CompDiff’s capability. However, it
1) may incur many false positives due to compilers’ optimizations
such as inlining, 2) is less persuading than final outputs in moti-
vating developers to fix the error, and 3) requires significant and
non-trivial implementation efforts in obtaining intermediate results
at run-time. It is, however, worth further exploration in the future.

3.2 CompDiff-AFL++

We here demonstrate integration details of CompDiff-AFL++. Since
CompDiff is orthogonal to fuzzers, we hope our demonstration
can guide the future adoption of CompDiff in other fuzzers.

In CompDiff-AFL++, there are multiple binaries compiled from
the target program 𝒫 . The first one is ℬ𝑓 𝑢𝑧𝑧 , which is compiled
by the fuzzer-configured compiler 𝒞𝑓 𝑢𝑧𝑧 . The compiler 𝒞𝑓 𝑢𝑧𝑧 in-
jects instrumentation code into 𝒫 such that the fuzzer can collect
coverage feedback from the resulting binary ℬ𝑓 𝑢𝑧𝑧 . If sanitizers
are enabled, 𝒞𝑓 𝑢𝑧𝑧 also insert sanitizer checks to ℬ𝑓 𝑢𝑧𝑧 . Note that,
ℬ𝑓 𝑢𝑧𝑧 is compiled the same as in normal AFL++. The remaining
binaries are all for CompDiff. As has been discussed in Section 3.1,
we recommend the use of compilers gcc and clang with different
optimization levels to form the set of compiler implementations
𝒞𝑖 , 𝑖 ∈ [1, · · · , 𝑘]. Each 𝒞𝑖 compiles 𝒫 to binary ℬ𝑖 . We inject some
lightweight instrumentation code into each ℬ𝑖 for efficient execu-
tion. We will discuss the instrumentation on ℬ𝑖 after introducing
the algorithmic sketch of CompDiff-AFL++.

Algorithm 1 shows the high-level workflow of CompDiff-AFL++.
The unhighlighted part describes AFL++’s main process:

1) (line 2) Select a seed input from the seed pool.
2) (line 3) Mutate the input with one of the available mutation

operators.
3) (line 4) Execute the program on the mutated input and collect

the feedback such as code coverage from the execution.
4) (line 5-8) If the new input causes a crash, save it to disk; if it

increases coverage, add it to the seed pool; otherwise, drop it.
Then go to step 1).

The highlighted part in Algorithm 1 shows where and how Com-
pDiff works in AFL++. It first runs the new input on each ℬ𝑖

(lines 9-10), then cross-checks their outputs and saves the input if
a divergence is found (lines 11-12). The workflow illustrates that
CompDiff does not interfere with AFL++’s normal procedures but
only augments it with the extra test oracle provided by CompDiff.
Thus, other fuzzing enhancements to AFL++ are compatible with
CompDiff-AFL++. For example, sanitizers work by instrumenting
ℬ𝑓 𝑢𝑧𝑧 to expose more bugs, and thus they can be normally used
in CompDiff-AFL++. Next, we will discuss key implementation
details in CompDiff-AFL++.

Instrumentation on ℬ𝑖 . Each compiler implementation 𝒞𝑖 primar-
ily specifies the used compiler and optimization level. For instance,
in our default setting, the compiler 𝒞1 uses CC=clang CXX=clang++
CFLAGS="-O0" CXXFLAGS="-O0" and compiler 𝒞2 uses CC=clang
CXX=clang++ CFLAGS="-O1" CXXFLAGS="-O1". To reduce the bur-
den of launching target binaries ℬ𝑖 , we also inject forkserver [26]
instrumentations into them. Forkserver has been widely used in
many fuzzers for the same purpose. At a high level, when the fuzzer
needs to execute an input on ℬ𝑖 , it first writes the input to shared
memory, then notifies the forkserver in ℬ𝑖 . After the forkserver
receives the notification, it forks itself, runs the input on the forked
child process, and informs the fuzzer when it is done. Interested
readers can find further details in [26].

Output examination.AFL++, by default, drops all outputs emitted
from the binary. To obtain output from each ℬ𝑖 , we redirect output,
as well as error, from each ℬ𝑖 to a file using dup2(). We then
compare the checksum values of these files to find discrepancies.
We reuse the MurmurHash3 [1] hash function supported by AFL++
for the checksum.

Bug-triggering inputs.We save all inputs that triggered output
discrepancies into a separate directory “diffs/” for future diagnosis.
Similar to crash-triggering inputs in normal fuzzing, there are many
inputs that trigger the same bug. It is non-trivial to automatically
identify unique discrepancies, especially in the context of differ-
ential testing. We currently rely on manual analysis of reported
discrepancies to triage bug reports. Automated triage, as well as
debugging, are discussed further in Section 5.

4 EVALUATION

In our evaluation, we use gcc 11.1.0 and clang 13.0.1, the
latest stable versions at the beginning of our evaluation, as the
back-end compilers in CompDiff and CompDiff-AFL++. These two
compilers are selected because of their widespread adoption in open-
source C/C++ projects. To thoroughly understand the capability
of different optimization levels, we utilize all frequently used ones,
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i.e., -O0, -O1, -O2, -O3, and -Os in both compilers. The combination
gives us 10 different compiler implementations. Our CompDiff-
AFL++ is implemented atop AFL++ version 3.15a. All experiments
are done in a server equipped with an AMD Ryzen Threadripper
3990X 64-Core 2.9GHz CPU and 256 GB RAM, and running Ubuntu
20.04.3 LTS.

We evaluate the effectiveness and practicality of CompDiff and
CompDiff-AFL++. To understand the capability of CompDiff in
finding unstable code, we evaluate it on a collection of benchmark
programs from the Juliet test suite. These programs contain a di-
verse range of undefined behaviors and the ground truth is available.
We then use 23 well-maintained open-source C/C++ projects to
evaluate the bug-finding ability of CompDiff-AFL++ in real-world
software. There are a plethora of static and dynamic tools for de-
tecting common UBs. We evaluate three popular and widely-used
C/C++ static analyzers, i.e., Coverity [40], Cppcheck [12], and In-
fer [31], on the Juliet test suite. These tools implement state-of-the-
art techniques for detecting various program issues and were used
in previous study [25, 28]. Since CompDiff is a dynamic analysis
tool, we also compare it with sanitizers, the state-of-the-art dynamic
analysis tools, on both the Juliet test suite and real-world software.
Other dynamic tools such as Valgrind [33] and Dr.Memory [6] do
not have better detection ability than sanitizers when source code
is available [16]. Thus we compare CompDiff with sanitizers only.
Specifically, we compare our tool with three widely-used sanitizers,
i.e., AddressSanitizer (ASan), UndefinedBehaviorSanitizer (UBSan),
and MemorySanitizer (MSan).

4.1 Effectiveness of CompDiff in Benchmark

Programs

The Juliet test suite C/C++ [35] released by NIST contains a collec-
tion of test cases, which are classified based on MITRE’s Common
Weakness Enumeration (CWE) classification system. This test suite
has been widely used to evaluate both static analysis tools [28, 31]
and dynamic testing approaches [16]. Each test case can run as an
independent program and contains two variants: a bad variant that
contains a flaw and a good that does not. All bad variants can be
used to evaluate the bug detection rate of a tool while good variants
can be used to evaluate the false positive rate of a tool.

Not all CWEs are due to undefined behaviors, many of which
are insecure or unsafe operations such as hard-coded password
(CWE-256). In order to evaluate the effectiveness of CompDiff in
finding unstable code, we manually analyzed each CWE category
and selected CWEs that represent bugs due to undefined behavior.
Since we only deal with programs that have deterministic output,
we excluded tests that deliberately change outputs per run. We also
removed tests that timed out after 5 seconds [16]. This extraction
gave us 18,142 tests spanning 20 CWEs. Table 2 shows an overview
of the selected CWEs.

We analyze each test with Coverity, Cppcheck, Infer, ASan,
UBSan, and MSan, in addition to our tool, CompDiff. For clear pre-
sentation, we merge tests with similar causes. We use bad (buggy)
variant of each test. We evaluate the bug detection rate and the
false positive rate of each tool. Bug detection rate (or recall) is the
percentage of all real bugs detected by the tool. False positive rate
is the percentage of incorrect reports (or false alarms) out of all

Table 2: Overview of selected CWEs.

CWE-ID Description #Tests

CWE-121 Stack Based Buffer Overflow 2,951
CWE-122 Heap Based Buffer Overflow 3,575
CWE-124 Buffer Underwrite 1,024
CWE-126 Buffer Overread 721
CWE-127 Buffer Underread 1,022
CWE-415 Double Free 820
CWE-416 Use After Free 394
CWE-475 Undefined Behavior for Input to API 18
CWE-588 Access Child of Non Struct. Pointer 80
CWE-590 Free Memory Not on Heap 2,280
CWE-685 Function Call With Incorrect #Args. 18
CWE-758 Undefined Behavior 523
CWE-190 Integer Overflow 1,564
CWE-191 Integer Underflow 1,169
CWE-369 Divide by Zero 437
CWE-476 NULL Pointer Dereference 306
CWE-680 Integer Overflow to Buffer Overflow 196
CWE-457 Use of Uninitialized Variable 928
CWE-665 Improper Initialization 98
CWE-469 Use of Pointer Sub. to Determine Size 18

Total 18,142

reports produced by a tool. Table 3 shows the bug detection rates
(%) and false positive rates (%) of each tool. Since all sanitizers and
CompDiff do not have false positive reports on the Juliet test suite,
we omit their false positive columns for better presentation. The
last column shows the number of bugs that can be uniquely dis-
covered by CompDiff compared to sanitizers. We next discuss five
findings on the results.

➤ Finding 1: Static tools have non-negligible false positive

rates and relatively lower bug detection rates compared to

CompDiff.

All static tools show non-negligible false positive rates. Coverity,
Cppcheck, and Infer have 0% ∼ 46%, 0% ∼ 35%, and 0% ∼ 69% false
positive rates, respectively. On the contrary, CompDiff has zero
false positive rate. Cppcheck can detect the same number of bugs as
sanitizers and CompDiff on CWE-475 and CWE-685. Infer detects
the most number of bugs on CWE-190∼680 while still has 25%
false positive rate. For the rest of bug categories, CompDiff has
significantly higher bug detection rates than Cppcheck and Infer.
For example, on CWE-588, CompDiff detect 99% of bugs while
Cppcheck and Infer only detect 0% and 2% of bugs, respectively. On
most of the CWEs, CompDiff detects more bugs than Coverity. For
bugs from “UB”, “Integer error”, and “Divide by zero”, Coverity has
higher bug detection rates. However, Coverity has 4% to 23% false
positive rates on these bugs.
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Table 3: Bug detection rates (%) and false positive rates (%) on the Juliet tests. The highest bug detection rates are highlighted

in green . False positive rates of static tools are shown in columns FP. Since all sanitizers and CompDiff have no false positive

on the Juliet tests, we omit their FP values. The last column (#Unique) lists the number of bugs that are uniquely detected by

CompDiff compared to sanitizers.

CWE-IDs Description

Static Tools Sanitizers CompDiff

Coverity FP Cppcheck FP Infer FP ASan UBSan MSan Total Detected #Unique

121∼127 127,
415, 416, 590 Memory error 39% 46% 13% 6% 37% 21% 94% ✗ ✗ 94% 63% 137

475 UB for input to API 100% 0% 100% 0% 0% 0% 100% ✗ ✗ 100% 100% 0

588 Bad struct. pointer 32% 21% 0% 4% 2% 2% 49% ✗ ✗ 49% 99% 40

685 Bad function call 100% 0% 100% 0% 0% 0% 100% ✗ ✗ 100% 100% 0

758 UB 100% 4% 0% 35% 0% 0% 36% ✗ ✗ 36% 92% 293

190, 191, 680 Integer error 22% 21% 0% 2% 49% 25% ✗ 33% ✗ 33% 11% 31

369 Divide by zero 54% 23% 8% 3% 3% 7% ✗ 54% ✗ 54% 29% 5

476 Null pointer deref. 69% 9% 29% 3% 77% 69% ✗ 92% ✗ 92% 93% 3

457, 665 Uinitialized memory 44% 56% 24% 15% 9% 13% ✗ ✗ 7% 7% 92% 882

469 UB of pointer Sub. 0% 0% 0% 0% 0% 0% ✗ ✗ ✗ 0% 100% 18

Overall, CompDiff shows stronger bug detection ability than
static analysis tools. In practice, static and dynamic tools have
complementary strengths and should be used together to maximize
the bug detection rate.

➤ Finding 2: CompDiff complements sanitizers by discov-

ering many extra bugs. CompDiff complements sanitizers’ bug
detection ability from three perspectives. First, for some kinds of
bugs, CompDiff has a higher detection rate than the combined san-
itizers. For example, on CWE-588 and CWE-758, CompDiff detects
99% and 93% of bugs while sanitizers in total only detect 49% and
36% of them. On CWE-457 and 665, although MSan in sanitizers
specializes in detecting uninitialized variable uses, it only covers
7% of bugs while CompDiff identifies 92% of them. Second, even
CompDiff fails to detect as many bugs as sanitizers in some classes
of tests, it still discovers unique bugs that are missed by sanitiz-
ers. For example, for the memory errors shown in the first row,
sanitizers detect 94% of bugs while CompDiff only achieves 63%
detection rate. But there are 137 bugs that can only be covered by
CompDiff. Third, CompDiff covers UBs that are not yet supported
by sanitizers. None of the sanitizers discovers any bug on CWE-469,
CompDiff, however, exposes them all.

➤ Finding 3: CompDiff has the highest bug coverage com-

pared to each individual sanitizer. Compared to the results
shown in columns “ASan”, “UBSan”, and “MSan”, the second-to-
last column shows that CompDiff can detect a diverse range of
unstable code. Each sanitizer, on the contrary, only specializes in
certain kinds of bugs. For example, MSan is only designed for uses
of uninitialized variables and thus it cannot detect all other bugs.

CompDiff’s design, however, stems from the general consequence
of UBs and thus has a higher overall bug coverage in principle.

➤ Finding 4: CompDiff misses certain kinds of bugs. Since
sanitizers are designed for specific classes of bugs, they work better
than CompDiff on them. For instance, UBSan reaches higher cov-
erage than CompDiff in bugs related to integer errors and divide
by zero. Because CompDiff only concerns a program’ final output,
an erroneous state resulting from these errors may not propagate
to the output. This weakness is expected from the design choice
of CompDiff. As we have been emphasizing, CompDiff is not to
replace sanitizers but to complement them to cover more bugs.

➤ Finding 5: CompDiff has no false positive. To measure
whether or not CompDiff report any false positive, we also run
CompDiff on good variant of each test. The result shows that Com-
pDiff has no false positive, which is also the reason why we do not
use a separate table for the result. For programs with deterministic
output and correct compiler implementations, it is expected that
outputs from the same input are identical across different compila-
tions.

Summary. The above findings suggest that CompDiff is effective
in detecting bugs related to UBs and has the highest overall bug
coverage. Our results also confirm the strong discovery rate of
each sanitizer on certain kinds of bugs. Compared to the combined
sanitizers, on some of the UBs, CompDiff cannot detect as many
bugs as them but still discovers additional unique bugs. We position
CompDiff as a complementary tool to sanitizers. One should use
both techniques to maximize the bug detection rate in practice.
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Figure 1: Number of bugs could be detected by each subset of

compiler implementations.

4.2 Impact of Reducing #Compiler

Implementations

By default, there are ten compiler implementations used in Com-
pDiff, i.e., gcc and clang with their respective optimization levels
-O0, -O1, -O2, -O3, and -Os. In order to understand if it is necessary
to use all of them in practice, we evaluate the number of bugs that
can be detected by each subset of compiler implementations.We use
the same Juliet tests as the previous evaluation. For each subset, e.g.,
{gcc-O0, gcc-O1, clang-O2}, we modify CompDiff’s configuration
so that it only checks outputs from compiler implementations in
the subset. We enumerate all possible subsets with sizes ranging
from 2 to 10 and each subset does not contain duplicate compiler
implementations.

The results are shown in Figure 1. We organize subsets according
to their sizes. The X-axis means the size of each subset, i.e., the num-
ber of compiler implementations in the subset. The Y-axis shows the
number of bugs detected by each subset. We can find that with the
increase of #compiler implementations, more bugs can be detected
overall. For subsets of the same size, their detection ability varies a
lot. For instance, when the number of compiler implementations
equals 2, we have 45 subsets in combination. The number of bugs
detected by them has a great difference as shown in the first box
in Figure 1. As annotated in the figure, the best performing subset
with size=2 is {gcc-O0, clang-O3}. Intuitively, these two compiler
implementations maximize compilation differences: both from dif-
ferent compilers, one is an unoptimizing compiler while the other is
an aggressively optimizing compiler. The worst performing subset
with size=2 is {gcc-O2, gcc-O3}. The reason is that they have the
same basic compiler and their optimizations are relatively similar.
CompDiff’s default setting achieves the best performance. Some
small subsets, e.g., 9, 8, or even 5, could detect nearly the same
number of bugs as the default full size. We argue that this is due to
the limited types of bugs in the Juliet tests. Discarding any compiler
implementation risks missing bugs in practice.

Although the detection capability of small subsets may not be as
good as the full size, they have lower run-time costs. For instance,

Table 4: Details of selected target projects.

Target Input type Version Size(LoC)

tcpdump Network packet 4.99.1 99K
wireshark Network packet 3.4.5 4.6M
objdump Binary file 2.36.1 74K
readelf Binary file 2.36.1 72K
nm-new Binary file 2.36.1 55K
sysdump Binary file 2.36.1 10K
openssl Binary file 3.0.0 702K
ClamAV Binary file 0.103.3 239K
libsndfile Audio 1.0.31 66K
libzip Compress tool v1.8.0 29K
brotli Compress tool v1.0.9 55K
php PHP 7.4.26 1.4M
MuJS JavaScript 1.1.3 18K
pdftotext PDF 4.03 130K
pdftoppm PDF 21.11.0 203K
jq json 1.6 46K
exiv2 Exiv2 image 0.27.5 384K
libtiff Tiff image 4.3.0 37K
ImageMagick Image 7.1.0-23 655K
grok JPEG 2000 9.7.0 127K
libxml2 XML 2.9.12 458K
curl URL 7.80.0 13K
gpac Video 2.0.0 597K

using {gcc-O0, clang-O3} can detect ∼98% bugs compared to the
full size, however, only has ∼20% run-time costs. If there are re-
source or time constraints, our results suggest that one can equip
CompDiff with a smaller subset of compilers but should at least
include two instances using different compilers and unoptimizing/
(aggressively) optimizing optimizations.

4.3 CompDiff-AFL++

In this part, we evaluate the bug detection capability of CompDiff-
AFL++ in real-world software.

Target projects. Table 4 lists details of all selected target projects.
All these targets are well-studied and frequently used in the fuzzing
community. They cover a broad range of functionalities including
network packets analyzers, binary file analyzers, multimedia file
processing, programming language implementations, compression
algorithms, etc. The sizes of these projects range from 10KLoC to
4.6MLoC, further emphasizing their diversity.

Experimental setting.We used the same experimental environ-
ment as previous experiments. To comprehensively evaluate Com-
pDiff-AFL++’s capability, we equipped CompDiffwith all ten com-
piler implementations. The initial seeds for targets are from their
official test suites. Seeds of type images and videos are expanded
with Mozilla Fuzzdata [41]. After a bug was found, we reported it
to developers and relied on their feedback to triage all reports. As
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Table 5: Bugs detected by CompDiff-AFL++ on 23 open-source C/C++ projects.

Unstable code due to undefined behavior

LINE Misc. Total

EvalOrder UninitMem IntError MemError PointerCmp

Reported 2 27 8 13 1 6 21 78
Confirmed 2 19 8 13 1 5 17 65
Fixed 2 15 6 12 1 5 9 52

has been discussed, automated triage is challenging in the context
of differential testing, we will discuss it further in Section 5. To
compare with sanitizers, for each program, we compiled it with
ASan/UBSan and MSan to obtain sanitizer-enabled binaries. We
then ran AFL++ on each binary and collected crashes found by san-
itizers. All fuzzers had 24 hours timeout threshold and we repeated
each fuzzing campaign 10 times.

Summary. Table 5 summarizes the number of bugs detected by
CompDiff-AFL++. We categorize bugs based on their root causes.
In total, CompDiff-AFL++ reported 78 bugs, 65 of which were con-
firmed by developers, and 52 were already fixed. The results demon-
strate that CompDiff-AFL++ is effective and useful for identifying
unstable code. Interestingly, as shown in the “LINE” and “Misc.”
columns, CompDiff-AFL++ detected not only undefined behaviors
but also other real bugs due to various issues. We next analyze these
bugs in detail. We guide our analysis with six consecutive research
questions.

➤ RQ1: What kinds of unstable code does CompDiff-AFL++

find?

As shown in the “Unstable code due to undefined behavior”
column in Table 5, we classify the found unstable code by their
root causes into five categories. Note that, unstable code that can
be covered CompDiff-AFL++ is in principle not limited to these
categories. For example, we did not find any bug related to CWE-
469, on which CompDiff has shown its strong detection ability in
Table 3. We anticipate CompDiff-AFL++ can detect a broader range
of unstable code when evaluating on more software. We next show
our analysis of each category.

EvalOrder. When the evaluation order of subexpressions has con-
flict side effects, the result becomes unstable. An example has been
shown in Listing 3 in Section 2. These two bugs are all found in
Tcpdump. After we reported these issues, the tcpdump developers
quickly fixed it. They also manually diagnosed that the other 7
locations potentially had the same issue and fixed them as well. The
developer commented that their fixes are just for “less disruptive” to
the current code base and “We should consider the cleaner long-term
mechanism for 5.0 or later to get rid of static buffers”.

UnitMem. Bugs due to uninitialized memories are classified into
this category. We have shown an example in Listing 4 in Section 2.
UnitMem bugs appear the most. The reason is that values of unini-
tialized variables depend on run-time memory layout, which often
changes per binary. Some bugs in this category could be detected

by MSan as well. We will compare our CompDiff with MSan on
these bugs in RQ3.
IntError. Integer overflow/underflow can cause unstable code. The
example in Section 1 shows a case where a code fragment is dis-
carded due to integer overflow. Sometimes integer overflow may
lead to inconsistent results across compiler implementations. For
instance, the following code
1 int a, b;
2 long x, y;
3 ...
4 x = y + a * b;

contains a potential signed integer overflow in line 4 when a*b
exceeds the range of int. In most cases, a*b is first calculated
and the result is then represented and stored to an int. However,
some compiler implementations such as clang-O1 first cast both a
and b into long and then does the calculation. These two routines
store different results to x when a*b overflows and thus becomes
unstable.
MemError. Bugs in this category are caused by memory-related
errors such as buffer-overflow and use after free. On one hand,
compilers can assume these errors never occur and transform code
having MemError arbitrarily at compile time. On the other hand,
these errors cause corrupted memory states and thus unstable pro-
gram states. These bugs can be detected by ASan in principle. We
will compare our CompDiff with ASan on these bugs in RQ3.
PointerCmp. Comparing pointers pointing to different objects /
unions / structs is undefined. The comparison result can be either
true or false depending on the compiler’s choice. CompDiff-AFL++
detected one such bug in readelf. We have discussed this bug in
Listing 2 in Section 2.
LINE. The C17 standard specifies multiple permissible behaviors
for __LINE__ macro [9] (§6.10.4). The interpretation of __LINE__
is implementation-defined behavior, , meaning that different com-
piler implementations may have divergent interpretation results.
CompDiff-AFL++ detected such inconsistencies in programs in-
cluding readelf, ImageMagick, Wireshark, libtiff, and php.
For instance, for the following php code with the bug in line 3,
1 <?php
2 $a = 0;
3 var_dump($b::class);
4 ?>

some php interpreters compiled from different compilers incorrectly
label line 2 instead of 3 as buggy.
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Miscellaneous. Surprisingly, CompDiff-AFL++ detected 21 real
bugs that are not due to undefined behavior. Their root causes are
miscellaneous. One interesting category is compiler bugs/issues,
where compilers instead of application programs are blamed for the
divergent output. We will further discuss this kind of bugs in the
next RQ. CompDiff detected many other program-specific issues
including, but not limited to, bad random value (libtiff), printing
pointer address instead of value (objdump), and even unknown
reasons (wireshark). All of these issues lead to divergent outputs
on the same input, and thus none of them are false positives. These
bugs demonstrate CompDiff’s strong ability in exposing unstable
issues.

➤ RQ2: Did CompDiff-AFL++ detect any compiler bug or

issue?

In our CompDiff’s design, we assume compilers are bug-free.
In practice, compiler bugs rarely affect real-world programs’ in-
tegrity [30]. According to our unstable code definition, compiler
bugs or issues can indeed cause divergent program outputs and
thus be caught by CompDiff. On the 23 real-world programs, we
found 3 compiler bugs due to miscompilation and 4 compiler issues
due to floating point imprecision. Next, we discuss them in detail.
Compiler miscompilation. CompDiff reported two compiler
miscompilations in gcc and one in clang, all of which were found
during fuzzing MuJS. Unlike other bugs introduced by program
developers, compilers are blamed for these bugs. After we reported
these bugs, the MuJS quickly confirmed these issues and proposed
solutions to temporarily avoid compiler miscompilations in their
code. Although compiler issues have been detected, we do not
anticipate CompDiff can be used to intensively find compiler mis-
compilations. Nevertheless, these issues are real bugs that affect
program correctness.CompDiff helps identify them and guarantees
program’s integrity across compilations.
Floating point imprecision. Different compilers or optimizations
may use different strategies to calculate floating point data. For
example, clang-O3 sometimes transforms pow() to the more effi-
cient exp2() libcall and has different decimal results from others.
Rounding strategies in different compiler implementations may also
cause divergent results. Strictly speaking, this is not a program bug,
but a compiler issue. We reported four such cases and developers
confirmed three of them. Only brotli’s developers committed to
fixing the reported bug, which was because floating-point impreci-
sion affected the internal state of a compression algorithm, making
the compressed file to be different across compiler implementations.
We do not consider any of these bugs as false positives because they
indeed lead to inconsistent results across compilations. Compared
to other bugs, floating point imprecision is relatively less serious in
most cases.

➤ RQ3: How many bugs found by CompDiff-AFL++ can be

covered by sanitizers?

Some of the detected bugs can in principle be captured by san-
itizers. Specifically, MemError by ASan, IntError by UBSan, and
UninitMem by MSan. For each bug detected by CompDiff, we
check if it can be discovered by sanitizers. Recall that AFL++ with
ASan, UBSan, and MSan were run on each target 10 times, we
collected all reports produced by them. For each bug reported by

Table 6: Of all the bugs detected by CompDiff, the number

of bugs that can also be discovered by sanitizers.

Sanitizers

CompDiff

ASan UBSan MSan Total

MemError 13 - - 13 13
IntError - 8 - 8 8
UninitMem - - 21 21 27
Remaining bugs - - - 0 30

Total 42 78

Figure 2: Number of bugs could be detected by each subset of

compiler implementations by CompDiff-AFL++.

CompDiff, we performed manual analysis to identify whether or
not sanitizers’ reports cover it. Table 6 shows the summarized re-
sult. Out of 78 bugs detected by CompDiff, 42 of them can also be
covered by sanitizers. The left 36, however, cannot. Specifically,
for MemError and IntError, ASan and UBSan successfully detected
all of them. MSan, however, only exposed 21 out of 27 UninitMem
bugs. In fact, we also observed that many bugs detected by sani-
tizers during fuzzing cannot be detected by CompDiff, either. The
observation is aligned with our findings in the Juliet tests. As we
have been emphasizing, CompDiff is not to replace sanitizers but
to complement them in exposing more bugs in practice. The unique
36 bugs detected by CompDiff support our claim.

➤ RQ4: Impact of #compiler implementations in CompDiff-

AFL++.

We have analyzed on the Juliet tests the impact of different
subsets of compiler implementations in CompDiff. To examine if
a consistent tendency can be observed in CompDiff-AFL++, we
also evaluate each subset of compiler implementations on the 78
real bugs. Figure 2 presents the results. Compared to our previous
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results in Figure 1, similar conclusions can be drawn: More compiler
implementations bring higher bug detection rates in CompDiff-
AFL++; different compilers with unoptimizing and aggressively
optimizing levels can bring us the best performance while similar
compiler implementations are less effective.

➤ RQ5: Handling non-deterministic or multi-threaded pro-

grams in CompDiff-AFL++.

Recall that CompDiff-AFL++ is designed to find unstable code in
programs with deterministic output. Non-deterministic programs
are typically concurrent or multi-threaded programs. They can
have either deterministic outputs, i.e., running the program on the
same input always emits the same output, or inconsistent outputs,
i.e., outputs may change per run. For non-deterministic or multi-
threaded programs, CompDiff can handle them as long as they
have deterministic output. In fact, among our evaluated 23 real-
world programs, 6 of them are non-deterministic or multi-threaded
programs, i.e., tcpdump, wireshark, MuJS, ImageMagick, grok, and
gpac. In total, CompDiff-AFL++ found 23 bugs in them, which
shows that CompDiff is capable of handling non-deterministic
programs that have deterministic outputs.

For non-deterministic programs without deterministic output,
our experience is that many of the non-determinism happen when
programs deliberately include random numbers or timestamps in
their outputs. Such non-determinism can be easily eliminated with
a post-processing script on the program’s output. For example, the
output of wireshark includes the timestamp when it generates
warnings:

10:44:23.405830 [Epan WARNING]

Different binaries are thus emitting inconsistent warning mes-
sages. To filter out these values, we used a regular expression to
match and remove all these timestamps in its outputs.

➤ RQ6: False positives of CompDiff-AFL++.

Theoretically, CompDiff has no false positives since all test
inputs saved by CompDiff are guaranteed to trigger discrepancies
across at least two compiler implementations. However, we still
need to deal with cases where some but not all binaries timeout.
For efficiency reasons, AFL++ deliberately terminates a binary after
a timeout threshold. Such terminations will inevitably truncate a
binary’s output, causing output discrepancy between terminated
binary and timed-out binary. In our CompDiff-AFL++, when a
generated input times out on partial binaries, we let CompDiff-
AFL++ save it first and then increase its timeout threshold until it
terminates. It is theoretically possible that a binary hangs forever.
However, our experience is that as long as one of the compiled
binaries terminates, others will terminate eventually but may have
longer execution time.

As we discussed before, false positives are also possible when
using CompDiff on non-deterministic programs that do not have
deterministic output. We have shown in RQ5 that many of the
non-determinism in the output have fixed patterns such as random
number and timestamp and can thus be eliminated. We consider
the general handling of programs with non-deterministic output as
a limitation of CompDiff and discuss further in Section 5.

5 DISCUSSION

Fault localization and bug report.

When a program failure is found, it is beneficial to automatically
and accurately localize the root cause in the source code. Fault lo-
calization techniques, in general, although extensively studied [49],
are not yet practical [5, 36]. Sanitizers provide function stack traces
to help developers pinpoint the root causes of crashes. Since bugs
found by CompDiff do not necessarily lead to crashes, such stack
trace-based approaches are not applicable. As all tests reported in
CompDiff result in different outputs across binaries, it is possible
to compare execution traces from different binaries to pinpoint the
root cause. Aligning executions on two binaries is challenging in
general. Although CompDiff has the advantage that all binaries are
compiled from the same source code, compilers, especially optimiza-
tions, will result in huge differences in control flows and variable
values. It would be interesting for future work to explore how to
accurately and efficiently align and compare multiple execution
traces.

Although we do not analyze the root cause bugs with CompDiff,
our current bug reports are useful for developers to diagnose and fix
bugs. In our bug reports, we include the following information: 1)
test input that triggers the bug, 2) two ormore compiler configurations
that can be used to reproduce the bug, and 3) the divergent outputs
on the provided test input. With our current reports, at the time of
writing, 52 out of the 78 reported bugs had already been fixed by
developers. Thus, there is clear evidence that our reports are useful
as developers are able to use them to quickly diagnose these issues.

Limitations.

CompDiff has detectedmany unknown bugs in real-world software.
All these bugs lead to inconsistent/incorrect outputs. CompDiff
incurs no false positive in programs with deterministic output.
Although all UBs by definition could lead to unstable code, exist-
ing compiler implementations may not exploit all of them. Thus
CompDiff cannot detect all UBs in practice. For unstable code,
CompDiff cannot discover all of them for two reasons. First, not
all erroneous states of unstable code propagate to final outputs.
Since CompDiff concerns output only, there is no way to detect
vanishing errors. Second, not all unstable code leads to inconsistent
behaviors. At run-time, binaries may enter the same erroneous state,
e.g., choosing the same uninitialized value, and emitting identical
but incorrect output. Extending CompDiff to a program’s internal
states would incur huge analysis overhead and might be gener-
ally infeasible and impractical. The succinct design of CompDiff
guarantees its generality and scalability. Another limitation of
CompDiff is in handling non-deterministic programs that have
non-deterministic output. An example is a multi-threaded program
where multiple threads concurrently print into the standard output
while there is no requirement on the order. In such cases, diver-
gent outputs across runs are normal and thus CompDiff will not
be useful in detecting errors. However, during our testing, we did
not encounter such cases and all our targeted non-deterministic
programs have deterministic output.

Overhead.

Our experimental results suggest that we should enable all ten
compiler implementations when using CompDiff in practice. The
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run-time overhead is roughly 10x normal execution. However, our
evaluations on the Juliet tests and real-world software also reveal
the fact that a smaller subset of compiler implementations can give
us a similar bug detection rate. For example, using only clang-O0
and gcc-Os in CompDiff-AFL++ can discover 69 out of total 78
bugs. The run-time overhead can be reduced from roughly 10x to 2x
normal execution. When using CompDiff in practice, we suggest
users enable as many compiler implementations as possible to max-
imize its bug-finding capability. If resources are constrained, users
should enable at least different compilers with diverse optimization
levels.

Improvements and future work.

The current design of CompDiff-AFL++ keeps the fuzzer’s core
logic and applies differential testing on each generated input. Its ef-
fectiveness largely depends on the quality of test inputs. AFL++ uti-
lizes code coverage feedback from executions to guide its mutation
strategies. If we incorporate the divergence observed from different
binaries into the feedback, there is a potential that AFL++ could gen-
erate more unstable code-triggering test inputs. NEZHA [37] takes
a similar approach by exploiting behavioral asymmetries between
multiple programs to improve AFL’s efficacy in generating inputs
that are likely to trigger semantic bugs. Its design is for different
implementations on the same specification such as OpenSSL and
LibreSSL. In CompDiff, binaries are compiled from the same source
code. Aligning execution paths and finding execution divergence
is much easier than NEZHA’s situation. Integrating execution di-
vergence into fuzzers’ feedback may enable CompDiff to find a lot
more unstable code. We believe this will be an interesting future
work to further enhance compiler-driven differential testing.

6 RELATEDWORK

Fuzz testing.

Fuzzing is the most popular random testing technique for discov-
ering security vulnerabilities in software [20, 32]. Due to its sim-
plicity and effectiveness, coverage-guided greybox fuzzers such as
AFL [50], LibFuzzer [45], and honggfuzz [19] are widely deployed
and have been the fundamental tools for many other advanced
fuzzers. To boost fuzzing performance, a lot of research efforts
have been put into improving various aspects of fuzzing, such as
seed scheduling [3, 4], mutation strategies [2, 29], and path explo-
rations [23, 44]. Our proposed CompDiff could serve as a plug-
and-play oracle for all these fuzzers to extend their capability from
discovering security defects to finding semantic bugs.
Differential testing.

Researchers have leveraged differential testing to find semantic
bugs across many types of programs, such as database management
systems [39], Java Virtual Machine (JVM) implementations [8],
REST APIs [18], and compilers [27]. Incorporating different testing
into fuzzing engines is also gaining more and more interest for
discovering functional bugs. For example, HeteroFuzz [51] detects
platform-dependent divergence for heterogeneous applications run-
ning on both CPU and FPGA. DifFuzz [34] discovers side-channel
leakages by analyzing two executions on the same binary. DIFUZ-
ZRTL [24] finds CPU bugs by differentially comparing multiple
CPU RTLs. It develops a novel register coverage for higher fuzzing
efficiency and efficacy.

Each of these differential fuzzing efforts focuses on one specific
domain. In contrast, CompDiff utilizes a generally applicable test
oracle that concerns a totally different kind of bugs, i.e., unstable
code. Another notable difference is that most of them incorporate
new designs to fuzzers in order to improve the possibility of dis-
covering bugs. CompDiff does not make changes to fuzzers core
logic and has been proven to be effective in finding interesting bugs.
Designing new feedback for CompDiff should be an interesting
research direction for future exploration.
N-version programming.

The concept of N-version programming (NVP) was first introduced
in 1978 by Chen and Avizienis [7]. It aims at improving fault toler-
ance of software by having N independent individuals or groups
implementing the same specification. Recent and practical appli-
cations of NVP are to opportunistically leverage existing diverse
software implementations. For example, Frost [46] executes mul-
tiple replicas with complementary thread schedules to protect a
program from data race errors; Varan [22] utilizes system call level
synchronisation to realize N-version execution systems; many dif-
ferential testing approaches discussed early are also instances of
NVP such as Chen et al. [8] that leverages different JVM imple-
mentations like Oracle’s HotSpot and IBM’s J9. CompDiff employs
different compiler implementations to obtain N-version binaries
of a program. We do not require any modification to a program’s
source code or its execution environment. In contrast to many dif-
ferential testing approaches, where additional implementations of a
target program are necessary, CompDiff, however, is not subject to
this requirement. We argue that our employment of compiler imple-
mentations to get multiple replicas is novel and unique compared
with the existing NVP schemes.
Finding undefined behavior.

Undefined behavior in C/C++ covers a wide range of illegal program
states. Apart from sanitizers, there are also many other popular
tools such as Dr. Memory [6] and Valgrind [33] that require no
compile-time instrumentation and detect errors at the binary level.
Static tools such as STACK [48], Infer [31], and Cppcheck [12]
cal also cover frequently occurring UBs. CompDiff is orthogonal
to them as 1) as a dynamic tool, CompDiff discovers bugs that
are beyond the reach of static tools, and 2) developers can always
use static tools, as well as dynamic tools, in different development
stages for finding more bugs.

7 CONCLUSION

Wehave introduced compiler-driven differential testing (CompDiff),
a simple, straightforward, yet effective approach for finding un-
stable code in C/C++ programs. CompDiff concerns program in-
put/output behaviors across metamorphic compiler implementa-
tions. The succinct design of CompDiff poses no constraint on the
underlying programming language and is generally applicable.

We also integrated CompDiff into AFL++ to improve our work’s
practicality. Our extensive evaluation on both benchmark and real-
world programs confirmed that CompDiff is effective in covering a
broad range of unstable code and significantly complements exist-
ing sanitizers by finding many unique bugs. We expect our study to
inspire further the community to explore the impact and detection
of unstable code.
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A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains the code and datasets we used for our experi-
ments, as well as scripts to generate the numbers, tables, and figures
of our evaluation. Specifically, it includes (a) the Juliet testsuite
used for evaluation; (b) scripts for running CompDiff, sanitizers,
Coverity, CppCheck, and Infer on the Juliet testsuite; (c) scripts for
reporting detection results of these tools; (d) scripts for generating
bug statistics on 23 real-world programs; and (e) scripts for fuzzing
a target with CompDiff-AFL++. Everything is packaged and pre-
built as a docker image. A standard X86 Linux machine running
docker is necessary to evaluate this artifact.

A.2 Artifact Check-List (Meta-Information)

• Data set: The Juliet testsuite
• Run-time environment: Linux
• Hardware: X86
• Output: Statistics of CompDiff detection results on the Juliet test-
suite and 23 real-world programs.
• How much disk space required (approximately)?: 30GB
• How much time is needed to prepare workflow (approxi-

mately)?: A few minutes to download and import the docker image.
• How much time is needed to complete experiments (approxi-

mately)?: 5 hours
• Publicly available?: Yes
• Code licenses (if publicly available)?:MIT
• Archived (provide DOI)?: Yes

A.3 Description

A.3.1 How to access. The artifact can be downloaded from the
following link:
https://doi.org/10.5281/zenodo.7612226

A.3.2 Hardware dependencies. A standard X86 machine.

A.3.3 Software dependencies. Docker

A.4 Installation

tar xf compdiff-asplos23-ae.tar.gz
cat compdiff-asplos23-image.tar | docker import - compdiff_ae

A.5 Experiment Workflow

(1) Run sanitizers on the Juliet testsuite.
(2) Run CompDiff on the Juliet testsuite.
(3) Run Coverity on the Juliet testsuite.
(4) Run CppCheck on the Juliet testsuite.
(5) Run Infer on the Juliet testsuite.
(6) Get bug report details of CompDiff-AFL++ on 23 real-world

programs.
(7) Fuzz a target with CompDiff-AFL++.

A.6 Evaluation and Expected Results

We provide datasets and scripts to generate all the evaluation re-
sults in Section 4. Specifically, Tables 2, 3, 5, 6 and Figures 1, 2 can
be reproduced.
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