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ABSTRACT

Non-crashing functional bugs of Android apps can seriously affect

user experience. Often buried in rare program paths, such bugs are

difficult to detect but lead to severe consequences. Unfortunately,

very few automatic functional bug oracles for Android apps exist,

and they are all specific to limited types of bugs. In this paper, we

introduce a novel technique named deep-state differential analysis,

which brings the classical łbugs as deviant behaviorsž oracle to

Android apps as a generic automatic test oracle. Our oracle utilizes

the observations on the execution of automatically generated test

inputs that (1) there can be a large number of traces reaching inter-

nal app states with similar GUI layouts, and only a small portion of

them would reach an erroneous app state, and (2) when performing

the same sequence of actions on similar GUI layouts, the outcomes

will be limited. Therefore, for each set of test inputs terminating

at similar GUI layouts, we manifest comparable app behaviors by

appending the same events to these inputs, cluster the manifested

behaviors, and identify minorities as possible anomalies. We also

calibrate the distribution of these test inputs by a novel input cali-

bration procedure, to ensure the distribution of these test inputs is

balanced with rare bug occurrences.
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We implemented the deep-state differential analysis algorithm

as an exploratory prototype Odin and evaluated it against 17 popu-

lar real-world Android apps. Odin successfully identified 28 non-

crashing functional bugs (five of which were previously unknown)

of various root causes with reasonable precision. Detailed compar-

isons and analyses show that a large fraction (11/28) of these bugs

cannot be detected by state-of-the-art techniques.
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1 INTRODUCTION

Background and Motivation. Non-crashing functional bugs [36]

of Android apps caused by program logic errors seriously affect user

experience [41]. Being buried in rare program paths, such bugs may

not be captured in the quality assurance (testing) procedure and

may lead to severe consequences [38].

Despite the rapid development of automatic test input genera-

tion for Android apps [2, 4, 8, 14, 18, 23, 24, 34, 35, 39], very few

automatic functional bug oracles for Android apps exist [36, 37].
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Figure 1: Workflow of Odin
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Figure 2: A motivating bug example

Specifically, metamorphic relations [7] can be established by com-

paring independent executions (Genie [36]) or with injected neu-

tral UI/system events (Thor [1] and SetDroid [37]). However, these

metamorphic relations all place a strong emphasize on the inde-

pendence of two event fragments, and are fundamentally limited in

identifying programming errors that occurred in dependent event

fragments. For instance, Genie’s authors acknowledged that only

29.5% of the non-crashing functional bugs in an empirical study

falls into the scope of Genie [36].

A natural question then arises: can we exploit the massive, au-

tomatically generated test inputs to expose potential logic errors?

This paper demonstrates that it is possible to mine behavioral speci-

fications for detecting non-crashing functional bugs without super-

vision. Specifically, we observed that automatically generated test

inputs can reach comparable states of an app, from which we can

differentiate its behaviors to find non-crashing, functional bugs.

Mining May-beliefs as Test Oracle. This paper introduces deep-

state differential analysis, a novel, generic, and automatic oracle

for Android apps that brings the classical łbugs as deviant be-

haviorsž [11] oracle to automatically generated GUI test inputs

of Android apps. Specifically, we mine may beliefs1 (expected app

behavior specifications) from execution traces and use such beliefs

to identify anomalies as deviant behaviors likely caused by bugs.

Our mined beliefs are based on the following two observations:

(1) There can be a large number of traces (test inputs) that end

up with a similar GUI layout. Suppose that the app is mostly

functionally correct, then only a small portion of them could

possibly end up with an erroneous state since developers

would already notice bugs on frequent program paths.

1The original paper [11] also defines a set of łmust beliefsž of formal specifications a
system must satisfy. A few existing techniques [1, 15] proposed manual must beliefs
(assertions concerning specific system behaviors) and are out of our scope.

(2) Android apps are designed with the łleast surprisež princi-

ple [30] that performing the same sequence of actions on

similar GUI layouts should trigger only a few limited behav-

iors of the app.

Therefore, if we append the same event sequence to all these

test inputs (ending up with similar GUI layouts), their triggered

app behaviors should fall into only a few behavior clustersśthe

majority becomes our belief (oracle). A corollary is thus any small

cluster should be considered potentially buggy.

There are two main challenges to porting this idea to Android.

First, beliefs (bugs as deviant behaviors) should be established

over łbalancedž traces of rare bug occurrences. However, exist-

ing coverage-directed test input generators often fail to provide

such traces, which are necessary for mining reliable beliefs. Our

approach addresses this challenge by a novel input calibration

procedure that generates additional test inputs by repeatedly ap-

proximating random walks on a mined GUI model of the app, so

that for each GUI model state representing a group of similar GUI

layouts, there are a set of sufficiently balanced test inputs reaching

it, with which we can safely mine reliable beliefs.

Second, the may-beliefs are extracted from the clustered łma-

jority behaviorsž. Android apps are GUI-centered, and thus using

the corresponding GUI layout sequence as a representation of the

app’s behavior is a common practice [2, 4, 14, 18, 34]. However, GUI

layouts often contain rich but redundant, or even non-deterministic

information [2, 14, 18, 23, 34] which hinders precise clustering and

majority extraction. To mitigate this challenge, our approach per-

forms a GUI-abstraction-based hierarchical clustering [9] on the

GUI layout sequences. Specifically, starting with each sequence in

its own cluster with no abstraction on the GUI layout, our approach

iteratively (1) selects one more rule from a pool of GUI abstraction

rules commonly adopted by existing work, (2) further abstracts

each GUI layout accordingly, and (3) merge clusters that contain
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similar abstracted GUI layout sequences. It attempts to detect out-

liers, which are accordingly identified as anomaly behaviors while

others as may-beliefs, by calculating and comparing z-scores [13]

of the clusters’ size after each round of merging.

The Odin Prototype Tool. We implemented the deep state dif-

ferential analysis algorithm as an exploratory prototype Odin and

evaluated it against 17 popular real-world Android apps. Odin suc-

cessfully identified 28 non-crashing functional bugs, five of which

were previously unknown. We reported these unknown bugs to

the developers, and all have been confirmed. Detailed comparisons

and analyses show that (1) a large fraction (11/28) of these bugs

cannot be detected by the state-of-the-art technique Genie [36],

(2) the input calibration and GUI-abstraction-based hierarchical

clustering can indeed improve Odin’s effectiveness, and (3) Odin

can identify non-crashing functional bugs of various root causes

with reasonable precision.

In Summary, this paper makes the following key contributions:

• We proposed deep-state differential analysis and brought the

łbug as deviant behaviorsž idea to Android apps as a novel,

generic, and automatic test oracle.

• We implemented the prototype tool Odin and will make it

public2.

• We evaluated the tool against real-world Android apps, and

the results are encouraging that Odin well complements

state-of-the-art techniques.

The rest of this paper is organized as follows. Section 2 provides

an overview of our approach with a motivating example. Details of

our approach are discussed in Section 3. In Section 4 we introduce

the implementation of Odin and in Section 5 the evaluation is con-

ducted. Related work is discussed in Section 6, and finally Section 7

concludes the paper.

2 OVERVIEW

It is non-trivial to port the łbugs as deviant behaviorsž idea to

Android despite its simplicity. This section describes the overview

of our approach illustrated in Figure 1, and discusses the challenges

and their mitigation.

Our approach takes the app under test and a set of its GUI ex-

ecution traces (a GUI execution trace is an event sequence com-

bined with the GUI layout sequence obtained by sending the event

sequence to the app) as input, and outputs bug reports. First, to

provide balanced GUI execution traces of rare bug occurrences

with which we can mine reliable beliefs, our approach constructs

a GUI model from the traces and preforms an input calibration

procedure for each GUI model state representing a set of similar

GUI layouts, and then extends calibrated inputs ending up at the

GUI state for manifesting normal and anomaly app behaviors. Next,

to find a deliberate abstraction that is simultaneously effective in

distinguishing anomaly behaviors and resistant to noises, it adopts

a GUI-abstraction-based hierarchical clustering algorithm to cluster

the manifested behaviors, mines may beliefs, and detects anomalies

from the behavior clusters. Anomalies are reported as potential

non-crashing functional bugs.

2https://automatedoracleforandroid.github.io/Odin/

We motivate our approach by a previously unknown bug (found

by our deep-state differential analysis) in the Amaze file manager

app (Figure 2). A user can use Amaze to view folders on the device

and select a folder to view its content by clicking its icon. There is a

subtle bug that Amaze sometimes erroneously identified an empty

folder inside a zip file as an APK. Clicking such a folder triggers

the system’s installer, while the expected behavior is displaying an

empty folder. This is a typical non-crashing functional bug.

State-of-the-art automated test input generators [14, 34, 39] can

occasionally trigger this erroneous behavior. We explain below how

do we establish the belief that łclicking an folder should not open

an app installerž.

2.1 Calibrating Generated Test Inputs

May-beliefs assume that (1) traces are sufficiently diverse, i.e., each

(internal) app state has a considerable portion of traces reaching

it, and (2) buggy traces are rare. However, automatically generated

test inputs are drawn from a highly skewed probability distribution

in which dominant inputs can only reach shallow app states with

limited diversity.

This is due to the coverage-directed nature of automatic test

input generators [4, 8, 14, 24, 34]. First, to maximize covered (inter-

nal) states or app code within a limited time, automatic test input

generators tend to stick to a profitable trace for long-term explo-

ration, producing a skewed distribution of test inputs. If such a

profitable trace is accidentally erroneous, it cannot be identified as

rare and buggy. Furthermore, deeper internal states are generally

more difficult to reach. Consequently, test inputs that reach deep

states are also rare and deep states lack sufficient traces for deriving

strong beliefs on majority behaviors.

Challenge 1: How to effectively generate massive, balanced test

inputs that provide all explored app GUIs (shallow or deep) with

sufficiently many traces of behavioral diversity?

To mitigate this challenge, our approach calibrates the generated

test inputs by approximating a random walk on a mined GUI model

of the app. First, our approach mines the app’s GUI model from

the GUI execution traces of massive, automatically generated test

inputs by grouping similar GUI layouts as GUI model states3 and

adding transitions according to the input event between each pair

of GUI layouts in the execution traces. Note that our approach

ensures that no non-deterministic transitions (i.e., an event can

trigger two different transitions from the same GUI model state) in

the GUI model. Given any GUI model state 𝜎 , no matter shallow or

deep, our approach simulates a random walk on the GUI model, i.e.,

finding a random path terminating at 𝜎 . The random walk forces

all outgoing transitions from the same GUI model state the same

probability. Specifically, suppose that the random walk is at GUI

model state 𝜎𝑖 , and there are transitions (𝜎𝑖 , 𝜎 𝑗 ) in the GUI model

(𝜎 𝑗 ∈ Σ, 𝜎𝑖 ≠ 𝜎 𝑗 ). Then, our approach selects each 𝜎 𝑗 ∈ Σ with

probability 1
|Σ |+1 and 𝜎𝑖 (terminating at the same state) with 1

|Σ |+1 ,

to obtain the next state 𝜎′𝑖 in the random walk. In each step of the

random walk, our approach also randomly selects an event that

can manifest the transition (𝜎𝑖 , 𝜎
′
𝑖 ), yielding a test input (event

3We consider two GUI layouts similar if they handle the same set of events, i.e., events
are interchangeable for both states.
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sequence) that can potentially terminates with GUI model state 𝜎 .

By repeating this procedure, our approach generates sufficiently

many and diverse test inputs for each GUI model state. Note that

the goal of our calibration is to generate, for each GUI model state 𝜎

(no matter whether it is shallow or deep) that has been covered by

some given test inputs, a set of diverse traces reaching 𝜎 . It does not

guarantee to cover all deep states of the app, which is a challenge

for any test input generation approach [4, 8, 14, 34, 39].

GUI modeling inevitably losses information, and test input ob-

tained from a random walk may not terminate at a designated 𝜎 in

real execution. To enable a practical approximation, when such an

inconsistency occurs, our approach re-mines the GUI model from

the original execution traces and the newly obtained ones causing

inconsistency.

In the motivating example, automatic test input generators can

providemassive execution traces reaching the sameGUImodel state

with folders listed on similar GUI layouts (the first GUI page of

each GUI page pair in Figure 2). However, the generators are likely

to stick to an erroneous one (reaching a GUI page displaying the

empty folder inside a zip file) and extend it for long-term exploration

because they can cover extra pieces of code that are incorrectly

executed to display an łapk filež, leading to a skewed distribution

in which the erroneous traces are no longer rare. Nonetheless,

our input calibration procedure is able to calibrate the skewed

distribution by generating additional test inputs for the GUI model

state, most of which reach the correct app states.

2.2 Manifesting App Behaviors

Given sufficiently balanced test inputs that reach a GUI model

state, we can reasonably assume that only a small fraction of the

inputs terminate with an erroneous internal state. However, it is

difficult to directly cluster internal states, which consist of low-level

representation of data like serialized heap objects.

Alternatively, we leverage the observation that an internal state

𝑠 can be characterized by its future behaviors. Specifically, for a

test input whose execution terminates with an internal state 𝑠 , we

can extend the test input by appending various event sequences to

the test input, and all observable triggered behaviors (GUI layouts)

of the appended events depend on 𝑠 . Manifested anomaly GUI

layouts indicate a buggy 𝑠 . Unfortunately, appending all inputs

with exhaustively enumerated event sequences yields an intractable

search space. Therefore, our second challenge concerns efficient

manifestation of diverse behaviors:

Challenge 2. How to efficiently extend inputs to manifest both

normal and deviant app behaviors for establishing beliefs?

This challenge is mitigated by the observation that appending

only one event to the inputs suffices for manifesting abnormal GUI

layouts and establishing beliefs. Suppose that an input terminating

with an internal state 𝑠0 is extended to yield a state transition

sequence of 𝑠0
𝑒1
−−→ 𝑠1

𝑒2
−−→ . . .

𝑒𝑘−1
−−−−→ 𝑠𝑘−1

𝑒𝑘
−−→ 𝑠𝑘 , in which 𝑠𝑘

displays an anomaly GUI layout. Then, our calibrated inputs should

contain sufficiently many test inputs that terminate with a similar

GUI layout with 𝑠𝑘−1, and only a minority of them hit an erroneous

state. Thus, appending only one event 𝑒𝑘 to such inputs (of similar

GUI layout, and thus 𝑒𝑘 can be applied to all of them) will establish

a may-belief that the less frequently occurred GUI layout of 𝑠𝑘
indicates a bug.

In the motivating example, for the GUI model state representing

app states in which a folde can be selected to view its content, our

approach appends different single events to the inputs reaching it.

When appending one click event on the folder, our approach mani-

fests both normal and anomaly GUI layouts illustrated in Figure 2

for belief mining.

2.3 Mining May-beliefs as Test Oracle

Finally, the may-beliefs are extracted from the łmajority behaviorsž

of GUI layouts. The one event we append to each input yields an in-

ternal state transition 𝑠
𝑒
−→ 𝑠′ connecting a pair of GUI layouts (ℓ, ℓ′)

that can be clustered. However, GUI layouts often contain rich but

redundant, or even non-deterministic information [2, 14, 18, 23, 34]

like dynamic Web contents. It is a challenge to find a deliberate ab-

straction that is simultaneously effective in distinguishing anomaly

behaviors and resistant to noises:

Challenge 3: How to cluster GUI layout pairs for establishing

correlations between anomaly behaviors and minority?

To mitigate this challenge, a GUI-abstraction-based agglomer-

ative hierarchical clustering [9] is performed by our approach.

Based on the common abstraction criteria adopted by existing

techniques [5, 14, 34], we design a set of abstraction rules (e.g.,

abstracting away all texts in the GUI layout) that can be applied

individually or combined. With each GUI layout pair in its own

cluster with no abstraction, our approach iteratively selects one

more abstraction rule and further abstracts all GUI layouts. After

applying a new rule, our approach merges similar clusters. Our ap-

proach measures the similarity between two clusters by comparing

the fingerprints of their contained GUI layout pairs. Specifically, it

uses the differential between the abstracted GUI layouts in each lay-

out pair as its fingerprint (denote by the tree editing distance [45]

of abstracted GUI layouts), which enables the clustering algorithm

to focus on the łinstantaneous rate of changež (e.g., a newly added

button or a piece of unchanged text) and ignore the accumulated

non-determinism over test input execution, like the first-order dif-

ferential of continuous functions. After each round of abstraction

and cluster merging, our approach conducts a z-score-based [13]

may-beliefs mining on the merged clusters in which outliers (if

any) are considered anomalies while others may-beliefs. Such an

iteration terminates when all abstraction rules are applied or any

anomaly is found (and thus may-beliefs are mined).

In the motivating example in Figure 2, for the majority of GUI lay-

out pairs, the second layout displays a list of different files. However,

for the erroneous ones obtained by clicking an empty folder inside

a zip file, the second layout displays a dialog asking permissions

to łinstallž the folder. With a deliberate abstraction, the majority is

grouped in one cluster (the may beliefs) while the erroneous ones

in another (the anomalies), and the non-crashing functional bug is

detected.
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Algorithm 1: GUI model mining

1 Function MineModel(𝑇ℓ = {𝐿1, 𝐿2, . . . , 𝐿𝑛 })

2 𝑉 ← ∅; 𝐸 ← ∅; 𝛿 ← ∅;

3 for each 𝐿 = ⟨ℓ0
𝑒1
−→ ℓ1

𝑒2
−→ . . .

𝑒𝑚
−−→ ℓ𝑚 ⟩ ∈ 𝑇ℓ do

4 𝑉 ← 𝑉 ∪ {{ℓ𝑖 } |0 ≤ 𝑖 ≤ 𝑚}; // initially, no state is merged

5 𝐸 ← 𝐸 ∪ {𝑒𝑖 |1 ≤ 𝑖 ≤ 𝑚};

6 𝛿 ← 𝛿 ∪ {⟨{ℓ𝑖−1}, 𝑒𝑖 , {ℓ𝑖 }⟩ |0 < 𝑖 ≤ 𝑚};

7 for each (𝜎𝑖 , 𝜎 𝑗 ) ∈ 𝑉 × 𝑉 and 𝜎𝑖 ≠ 𝜎 𝑗 do // in the BlueFringe

ordering [17]

8 ⟨𝑉 ′, 𝛿 ′ ⟩ ← merge-recursive(𝜎𝑖 , 𝜎 𝑗 ,𝑉 , 𝛿 ) ;

9 if ⟨𝑉 ′, 𝛿 ′ ⟩ ≠ ⊥ then

10 ⟨𝑉 , 𝛿 ⟩ ← ⟨𝑉 ′, 𝛿 ′ ⟩;

11 return ⟨𝑉 , 𝐸, 𝛿 ⟩

12 Function merge-recursive(𝜎1, 𝜎2,𝑉 , 𝛿 )

13 if ∀ℓ1 ∈ 𝜎1, ℓ2 ∈ 𝜎2 .similar(ℓ1, ℓ2 ) then

14 𝑉 ′ ← 𝑉 \{𝜎1, 𝜎2} ∪ {𝜎1 ∪ 𝜎2}; 𝛿
′ ← 𝛿 [𝜎1/𝜎2 ];

15 for each ⟨𝜎1, 𝑒, 𝜎𝑘 ⟩, ⟨𝜎1, 𝑒, 𝜎𝑡 ⟩ ∈ 𝛿
′ and 𝜎𝑘 ≠ 𝜎𝑡 do

16 ⟨𝑉 ′, 𝛿 ′ ⟩ ← merge-recursive(𝜎𝑘 , 𝜎𝑡 ,𝑉
′, 𝛿 ′ ) ;

17 if ⟨𝑉 ′, 𝛿 ′ ⟩ = ⊥ then

18 return ⊥ // merge failed

19 return ⟨𝑉 ′, 𝛿 ′ ⟩ ≠ ⊥

20 return ⊥ // merge failed

3 DEEP-STATE DIFFERENTIAL ANALYSIS

3.1 Notations and Definitions

Android apps are GUI-centered and event-driven. At runtime, the

GUI layout (snapshot) of the app 𝑃 ’s current (internal) state 𝑠 , ℓ =

𝐿(𝑠), is represented as a tree in which each node 𝜔 ∈ ℓ is a GUI

widget (e.g., a button or a text field object). A set of attributes are

associated with each node, for instance 𝜔.𝑡𝑦𝑝𝑒 refers to 𝜔 ’s widget

type (e.g., a button or a text field) and 𝜔.𝑡𝑒𝑥𝑡 refers to 𝜔 ’s displayed

text (𝜔.𝑡𝑒𝑥𝑡 = ⊥ if no text is displayed). When 𝑃 is inactive (closed

or paused to background), no GUI layout exists and ℓ = ⊥.
An GUI event 𝑒 = ⟨𝑡, 𝑟 ⟩ is a record in which 𝑒.𝑡 and 𝑒.𝑟 denote

𝑒’s event type and receiver widget, respectively. An event type can

either be click, long-click, or swipe 4 , and the receiver 𝑟 (ℓ) = 𝜔

denotes the widget 𝜔 ∈ ℓ to which 𝑒 can be delivered (𝑟 (ℓ) = ⊥ if

this event cannot be delivered to any widget of ℓ).

Executing 𝑃 with an event sequence (i.e., a test input) [𝑒1, 𝑒2, . . . , 𝑒𝑛]

yields an execution trace 𝜏 = ⟨𝑠0
𝑒1
−−→ 𝑠1

𝑒2
−−→ . . .

𝑒𝑛
−−→ 𝑠𝑛⟩, in which 𝑠0

is the initial (internal) app state, and sending event 𝑒𝑖+1 to state 𝑠𝑖
yields a new state 𝑠𝑖+1 (0 ≤ 𝑖 < 𝑛). Its corresponding GUI execution

trace is 𝐿 = ⟨ℓ0
𝑒1
−−→ ℓ1

𝑒2
−−→ . . .

𝑒𝑛
−−→ ℓ𝑛⟩, where ℓ𝑖 = 𝐿(𝑠𝑖 ) (0 ≤ 𝑖 ≤ 𝑛).

3.2 Calibrating Generated Test Inputs

We calibrate the automatically generated test inputs by simulating

a random walk on an automatically mined GUI model.

Mining a GUI Model. The GUI model is mined from the GUI

execution traces of massive, automatically generated test inputs.

4Our approach does not limit (and assume) the event types in the given test inputs.
GUI events, such as text input or pinch, can be modeled as combinations of these three
types of events. For example, a text input event can be modeled as a series of click
events on the soft keyboard.

Algorithm 2: Calibrating over GUI model 𝐺 (𝑉 , 𝐸, 𝛿)

1 Function Calibrate(𝑇 )

2 𝑇 ′ ← ∅;

3 repeat

4 𝜎★ ← argmin
𝜎∈𝑉

∑︁

𝜏 ∈𝑇

[reach(𝜏★, 𝜎 ) ];

5 𝑝 ← random-walk(⟨𝜎0 ⟩, 𝜎
★) ;

6 if 𝑝 ≠ ⊥ then

7 𝑇 ′ ← 𝑇 ′ ∪ {to-input(𝑝 ) };

8 until sufficiently many traces are collected;

9 return𝑇 ∪𝑇 ′ ;

10 Function random-walk(𝑝 = ⟨𝜎0, 𝜎1, . . . , 𝜎𝑖 ⟩, 𝜎
★)

11 if |𝑝 | >MAX_LIMIT then

12 return ⊥

13 Σ← {𝜎 |∃𝑒 ∈ 𝐸.⟨𝜎𝑖 , 𝑒, 𝜎 ⟩ ∈ 𝛿 };

14 if 𝜎𝑖 = 𝜎★ then

15 Σ← Σ ∪ {𝜎𝑖 }; // terminate at the designated GUI model state

16 for each 𝜎𝑖+1 ∈ shuffle(Σ) do

17 if 𝜎𝑖+1 = 𝜎𝑖 and 𝜎𝑖 = 𝜎★ then

18 𝑝′ ← 𝑝 ;

19 else

20 𝑝′ ← random-walk(⟨𝜎0, 𝜎1, . . . , 𝜎1, 𝜎𝑖+1 ⟩, 𝜎
★) ;

21 if 𝑝′ ≠ ⊥ then

22 return 𝑝′

23 return ⊥

Given the execution trace set 𝑇 = {𝜏1, 𝜏2, . . . , 𝜏𝑛}, whose corre-

sponding GUI execution trace set is 𝑇ℓ = {𝐿1, 𝐿2, . . . , 𝐿𝑛}, its cor-
responding GUI model is a tuple 𝐺 (𝑉 , 𝐸, 𝛿), in which 𝑉 is a set of

GUI model states ({𝜎 |𝜎 ∈ 𝑉 } is a partition of all GUI layouts in
⋃

𝐿∈𝑇ℓ {ℓ |ℓ ∈ 𝐿}), 𝐸 is the set of events sent to the app on some

𝐿 ∈ 𝑇ℓ , and 𝛿 : 𝑉 × 𝐸 → 𝑉 are the transitions in 𝐺 .

To mine a minimal GUI model, we adopt the existing algorithm

(Algorithm 1) in SwiftHand [8] that groups similar GUI layouts

together and ensures transitions in the model are deterministic 5.

We consider two GUI layouts ℓ1 and ℓ2 are similar if and only if

they can handle the same set of events, i.e., ∀𝑒 ∈ 𝐸.𝑒.𝑟 (ℓ1) ≠ ⊥ ↔
𝑒.𝑟 (ℓ2) ≠ ⊥. Specifically, if we have witnessed in 𝑇ℓ that an event

𝑒 is sent to a widget 𝜔 ∈ ℓ1, we compute the tree editing distance

between ℓ1 and ℓ2 using the classic Zhang-Shasha algorithm [45],

and find the shortest editing operation sequence (each editing oper-

ation inserts, removes, or modifies a widget) that transforms ℓ1 to

ℓ2. If 𝜔 is not removed during the transformation, there must exist

a unique correspondence 𝜔 ′ ∈ ℓ2. We thus let 𝑒.𝑟 (ℓ2) = 𝜔 ′. Other-

wise, 𝑒.𝑟 (ℓ2) = ⊥ and we consider ℓ1 and ℓ2 not similar. We discuss

the editing operation sequence in more details in Section 3.4.

RandomWalk Simulation. With the GUI model𝐺 (𝑉 , 𝐸, 𝛿), we
calibrate automatically generated test inputs by a random walk

simulation with the algorithm presented in Algorithm 2.

Given a set of traces 𝑇 , we select the least balanced GUI model

state 𝜎★ ∈ 𝑉 , i.e., 𝜎★ has the fewest traces reaching it (Line 4).

łReachingž a GUI model state 𝜎 is defined by visiting 𝜎 one or more

5All transitions in a GUI model𝐺 (𝑉 , 𝐸, 𝛿 ) are deterministic if and only if for each
𝜎 ∈ 𝑉 , �⟨𝜎, 𝑒, 𝜎1 ⟩, ⟨𝜎, 𝑒, 𝜎2 ⟩ ∈ 𝛿 such that 𝜎1 ≠ 𝜎2 .

438



ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Jue Wang, Yanyan Jiang, Ting Su, Shaohua Li, Chang Xu, Jian Lu, and Zhendong Su

times:

reach(𝜏, 𝜎) ⇔
�

�{𝑠 ∈ 𝜏 | 𝐿(𝑠) ∈ 𝜎}
�

� ≥ 1

Then, we try to find a path 𝑝 on the model reaching the least

balanced 𝜎★ via a simulated random walk starting at the initial GUI

model state 𝜎0 (Line 5), and obtain the corresponding test input

(Line 6-7). The initial GUI model state 𝜎0 is the state containing

GUI layout of the app at the initial app state. Such a procedure is

repeated until sufficiently many traces are obtained (Lines 3ś7).

During a simulated random walk, when at a GUI model state 𝜎𝑖 ,

we first obtain Σ, the set of GUI model states that an outer transition

from 𝜎𝑖 can reach (Line 13). Moreover, if 𝜎𝑖 is the target GUI model

state 𝜎★, we also add it to Σ (Lines 14ś15). We then iteratively select

each 𝜎𝑖+1 ∈ Σ with a uniform probability 1
|Σ | in turn (Line 16), and

continue the random walk on 𝜎𝑖+1 (Lines 17ś20). Such an iteration

terminates when all 𝜎𝑖+1 ∈ Σ have been selected or a transition

path to 𝜎★ is found (Lines 16ś22). To reduce the search space, we

also limit the number of steps in one random walk (Lines 11ś12).

The Feedback Loop. GUI modeling inevitably losses informa-

tion [14, 34], and the test input we obtained by a simulated random

walk may not actually yield the same transitional path in real ex-

ecution. To reduce the occurrence of such inconsistencies, after

we obtain a transitional path 𝑝 = ⟨𝜎0, 𝜎1, . . . , 𝜎 |𝑝 | ⟩ and its corre-

sponding test input, we send the input to the app and record the

actual execution trace 𝜏 and its corresponding transitional path

𝑝′ = ⟨𝜎′0, 𝜎
′
1, . . . , 𝜎

′
|𝑝′ |
⟩ in the GUI model. If an inconsistency occurs,

i.e., for a transition ⟨𝜎𝑖 , 𝜎𝑖+1⟩ (0 ≤ 𝑖 < |𝑝 |) in 𝑝 , the corresponding

transition ⟨𝜎′𝑖 , 𝜎
′
𝑖+1⟩ in 𝑝′ has 𝜎𝑖 = 𝜎′𝑖 but 𝜎𝑖+1 ≠ 𝜎′𝑖+1, we add 𝜏 ’s

GUI execution trace to 𝑇ℓ from which the GUI model 𝐺 (𝑉 , 𝐸, 𝛿) is
mined, and re-mine a new minimal GUI model𝐺 ′ (𝑉 ′, 𝐸, 𝛿 ′), which
will be used for future calibration and belief mining.

3.3 Manifesting App Behaviors

Given any test input (trace) that terminates with GUI model state

𝜎 (can be obtained by selecting a trace reaching 𝜎 and removing all

subsequent events after reaching 𝜎), we extend it by exactly one

event to manifest potentially buggy behaviors. Specifically, given

a GUI model state 𝜎 = {𝐿(𝑠)}, all 𝑠 respond to the same set of

events due to our similarity criteria. Therefore, the belief mining is

conducted on the per-event basis. Suppose that all states s, where

𝐿(𝑠) ∈ 𝜎 , responds to 𝑒 . We enumerate all inputs [𝑒1, 𝑒2, . . . , 𝑒𝑛]
reaching 𝜎 and append 𝑒 to yield a new execution trace

𝜏+ = ⟨𝑠0
𝑒1
−−→ 𝑠1

𝑒2
−−→ . . .

𝑒𝑛
−−→ 𝑠𝑛

𝑒
−→ 𝑠𝑛+1⟩,

and the layout pair of the last state transition ⟨𝐿(𝑠𝑛), 𝐿(𝑠𝑛+1)⟩ repre-
sents themanifested app behavior fromwhichweminemay-beliefs.

3.4 Mining May Beliefs

Hierarchical Behavior Clustering. Given a set of GUI layout

pairs 𝐵 = {⟨ℓ1, ℓ
′
1⟩, ⟨ℓ2, ℓ

′
2⟩, . . . , ⟨ℓ𝑛, ℓ

′
𝑛⟩} obtained by sending a same

event to inputs terminating with a same GUI model state, we con-

duct a agglomerative hierarchical clustering [9]. As shown in Al-

gorithm 3, initially each layout pair starts with no abstraction in

its own cluster (Lines 2-3). Next, we iteratively select one more

abstraction rule to apply (Line 5). We study existing start-of-the-

art techniques concerning GUI layout abstraction [5, 14, 34], and

Algorithm 3: Hierarchical Behavior Clustering

1 Function Cluster(𝐵 = {⟨ℓ1, ℓ
′
1 ⟩, ⟨ℓ2, ℓ

′
2 ⟩, . . . , ⟨ℓ𝑛, ℓ

′
𝑛 ⟩} )

2 𝑅 ← ∅; // initially, no abstraction rule applied

3 C ← {{⟨ℓ, ℓ ′ ⟩} | ⟨ℓ, ℓ ′ ⟩ ∈ 𝐵}; // each layout pair in its own cluster

4 while not all abstraction rules are applied and | C | > 1 do

5 𝑟 ← select-one-rule(C) ; 𝑅 ← 𝑅 ∪ {𝑟 };

6 for each ⟨𝐶1,𝐶2 ⟩ ∈ C × C and𝐶1 ≠ 𝐶2 do

7 Δ1 ← fingerprint(𝐶1, 𝑅) ;

8 Δ2 ← fingerprint(𝐶2, 𝑅) ;

9 if Δ1 = Δ2 then

10 C ← C\{𝐶1,𝐶2} ∪ {𝐶1 ∪𝐶2};

11 𝐶𝑒𝑟𝑟𝑜𝑟 ← detect-anomaly(C) ;

12 if 𝐶𝑒𝑟𝑟𝑜𝑟 ≠ ⊥ then

13 return ⟨C,𝐶𝑒𝑟𝑟𝑜𝑟 ⟩

14 return ⊥

15 Function fingerprint(𝐶 = {⟨ℓ1, ℓ2 ⟩}, 𝑅)

16 ⟨ℓ1, ℓ2 ⟩ ← random-choice(𝐶 ) ;

17 ℓ ′1 ← abstract(ℓ1, 𝑅) ;

18 ℓ ′2 ← abstract(ℓ2, 𝑅) ;

19 Δ← tree-edit(ℓ ′1, ℓ
′
2 ) ;

20 return Δ

design a set of abstraction rules that can be applied individually

or combined. There are three abstraction rules that can be applied,

namely (1) sets the value of a specific attribute 𝑎𝑡𝑡𝑟 of all widgets

(e.g.,𝜔.𝑡𝑒𝑥𝑡 ) in a GUI layout ℓ to⊥, i.e., for all𝜔 ∈ ℓ , set𝜔.𝑎𝑡𝑡𝑟 = ⊥,
(2) removes all widgets in a GUI layout ℓ that are not the receiver of

any event, i.e., remove each widget 𝜔 ∈ ℓ if ∀𝑒 ∈ 𝐸.𝑒.𝑟 (ℓ) ≠ 𝜔 , and

(3) removes duplicate sub-trees of each widget 𝜔 in a GUI layout ℓ

if it displays a list on the GUI, e.g, if 𝜔.𝑡𝑦𝑝𝑒 = ListView.

For each iteration, we select one more rule that (1) has not been

applied, and (2) leads tominimal clustermerging, i.e., fewest clusters

can be merged after applying this rule, and add it to the rule set

𝑅 (Line 5). With 𝑅, we enumerate each cluster pair ⟨𝐶1,𝐶2⟩ to
determine whether they can be merged by comparing their new

fingerprints (Line 6ś10). After merging all clusters with identical

fingerprint, we try to detect anomalies (and mine may-beliefs) on

the merged clusters (Line 11). Such an iteration terminates when

all abstraction rules are applied, only one cluster remains, or we

have found an anomaly (Lines 4ś13).

Fingerprint Extraction. As Algorithm 3 shows, to extract fin-

gerprint of a cluster 𝐶 , we randomly select one layout pair in

⟨ℓ1, ℓ2⟩ ∈ 𝐶 (Line 16), apply the currently selected abstraction rules

on ℓ1 and ℓ2, and calculate the differential between the abstracted

layouts ℓ′1 and ℓ′2 as 𝐶’s fingerprint (Lines 17ś20).

We denote the differential of two (abstracted) GUI layouts ℓ and

ℓ′ as a tree editing operation sequence [45] Δ transforming ℓ to ℓ′.

Each operation is a tuple 𝑜 = ⟨𝑡, 𝜔, 𝜔 ′⟩, where 𝑡 is its type (addition,
deletion, or modification), 𝜔 is the target of 𝑜 , and 𝜔 ′ is the widget

after the operation is applied. For an adding operation, we add 𝜔 ′

as 𝜔 ’s leftmost child. For an deleting or modification operation, we

replace 𝜔 with 𝜔 ′ (for deleting operations 𝜔 ′ = ⊥). Specifically for

a modification operation 𝑜 = ⟨𝑡, 𝜔, 𝜔′⟩, if for an widget attribute

𝑎𝑡𝑡𝑟 (e.g., 𝑡𝑒𝑥𝑡 ) we have𝜔.𝑎𝑡𝑡𝑟 = 𝜔 ′ .𝑎𝑡𝑡𝑟 , we set𝜔.𝑎𝑡𝑡𝑟 and𝜔 ′ .𝑎𝑡𝑡𝑟

to ⊥ to reduce noises.
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We randomly select one layout pair in 𝐶 and use its Δ as 𝐶’s

fingerprint because (1) all layout pairs start in their own clusters,

(2) we only merge clusters with identical fingerprints, and (3) for

any two layout pairs in one cluster, applying one more abstraction

rule may only remove identical operations in their Δs. Therefore,

we can safely assume that all layout pairs in a cluster share the

same Δ.

Anomaly Detection and May-Beliefs Mining. Given a set of

clusters C = {𝐶1,𝐶2, . . . ,𝐶𝑚}, we conduct a z-score-based analysis

to identify anomaly clusters. Ideally, the z-score [13] of a cluster

𝐶 ∈ C is

𝑧𝐶 =
|𝐶 | − 𝜇C

sC
,

where 𝜇C is the average sizes of clusters in C and sC is the standard

deviation. However, |C| can be quite small, and the anomaly clusters

can largely affect 𝜇C and sC . Therefore, we replace 𝜇C and sC with

𝜇C′ and sC′ , respectively, where the majority subset C′ ⊆ C is the

smallest subset such that
∑︁

𝐶′∈C′
|𝐶′ | ≥

3

4

∑︁

𝐶∈C

|𝐶 |.

Following the common practice, a cluster 𝐶 ∈ C is considered

anomaly if 𝑧𝐶 ≥ 3 and |𝐶 | < 𝜇C′ . Other clusters are accordingly

considered as may beliefs.

4 IMPLEMENTATION

We implemented the deep state differential analysis algorithm as

a prototype tool Odin consisting of 14,362 lines of Kotlin code.

We extensively used open-source tools in the implementation, and

Odin is also open-source available: bootstrapping automatically

generated test inputs (traces) are obtained using APE [14] and

ComboDroid [39]. Such a mixed bootstrapping is also inspired by

existing work [36]. APE is also used to execute test inputs and

obtain execution traces (GUI layout dumps at app states regarded

quiescent by APE after launching and sending each event).

All implementation is consistent with the descriptions in Sec-

tion 3. For performance considerations, during the calibration pro-

cedure (Algorithm 2) , if the trace of a generated input for 𝜎★ does

not reach 𝜎★, Odin still keeps it in the calibrated input set but

does not count it when checking the number of test inputs for

termination. Moreover, for each GUI model state and appended

event pair, may beliefs are mined and multiple anomalies can be

detected. Odin outputs a single report containing all corresponding

execution traces and clusters for further manual examination.

5 EVALUATION

Our evaluation aims to answer the following research questions:

• RQ1 (Bug Finding, Section 5.2): How effective does Odin

automatically find non-crashing functional bugs in real An-

droid apps comparing with state-of-the-art techniques?

• RQ2 (Test Input Calibration, Section 5.3): How beneficial

is input calibration in establishing beliefs and finding non-

crashing functional bugs?

• RQ3 (May-Belief Mining, Section 5.4): How beneficial is

our may-belief mining algorithm in identifying non-crashing

functional bugs?

• RQ4 (False Positives, Section 5.5): How precise does Odin

report non-crashing functional bugs?

• RQ5 (Bug Types, Section 5.6): What types and character-

istics of non-crashing functional bugs can Odin find?

5.1 Experimental Subjects and Setup

Evaluated Apps. We first collected 11 apps (latest version) used in

the evaluation of existing Android testing/oracle work [14, 34, 39]

as Group Randoms. We selected the top three largest (in LoC) among

all available subjects:Wikipedia, AntennaPod, and AnkiDroid,

and eight random subjects with at least 10K downloads and 4,000

LoC. These subjects are listed as the first group in Table 1.

To conduct a full comparison with the state-of-the-art work Ge-

nie [36], we also include all experimental subjects in the evaluation

of Genie, excluding two non-functional apps (RadioDroid and Sku-

Tube) due to unavailable Web services. For AnkiDroid, AnyMemo,

Markor, and Transistor, their latest versions are included in the

first group of subjects. The remaining six subjects are listed as the

second group named Group Comparisons in Table 1.

If an app’s major functionalities cannot be accessed without a

proper initial setup (e.g., user login), we provided the app a script to

complete the setup. All evaluated techniques received exactly the

same script, which runs automatically once the initial setup GUI is

reached, to ensure a fair comparison. This is a common practice in

Android testing [4, 5, 8, 14, 34, 39]. We did not mock any further

functionality other than the initial setup script.

Experimental Setup. To answer RQ1, we compared Odin with

the state-of-the-art automated oracle Genie [36] on all 17 selected

apps. Genie was configured with its default settings (same in its

evaluation): one hour for mining a GUI transitional model and gen-

erating 20 initial test inputs with up to 15 events. Then, it mutated

the test inputs (at most 4,500 mutated test inputs from one initial

test input), executed them on 16 parallel Android emulators, and

detected non-crash functional bugs. The exploration is terminated

if accumulated wall-clock time exceeds 48 hours.

Odin is given a same 48-hour time limit. Since Odin requires

massive test inputs to establish beliefs, we divide the 48-hour into

12 hours of test input generation (6 hours each for APE [14] and

ComboDroid [39], each test input is 60-event long) and 36 hours

for test input calibration and behavior manifestation on 16 parallel

emulators. Runtime cost for anomaly detection is negligible. The

calibration process terminates whenOdin obtains the same number

of test inputs as the automatically generated ones, and the steps of

a simulated random walk is also limited to 60. For each GUI model

state𝜎 ,Odin keeps 200 random inputs reaching𝜎 . We compared the

numbers of bug reports, true positive ones, and detected distinct

non-crashing functional bugs of Odin and Genie. We manually

analyzed the GUI execution traces and related code of true bugs to

determine their distinctness.

To answer RQ2 and RQ3, we compared Odin with two of its

variants, namely Odin-NoCalib and Odin-Simple on the subjects

of the Randoms. Odin-NoCalib does not conduct test input cali-

bration, but directly samples 200 inputs for each GUI model state

from automatically generated test inputs. On the other hand, Odin-

Simple adopts a simple clustering and anomaly detection strategy.

Specifically, for clustering it uses a fixed abstraction criteria that
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Table 1: Experimental subjects and comparison results with Genie

ID Subject (Version, #Downloads, LoC)
Genie [36] Odin Comparison

#TP/#Report #Input #State (Cov) #TP/#Report Genie Common Odin

Group Random: Random apps, latest version

1 Wikipedia (2.7.50366, 10Mś50M, 93404) 35/112 (31.2%) 1 5,015 261 (8.0%) 136/381 (35.7%) 1 0 1 0

2 AntennaPod (2.0.0, 100Kś500K, 262460) 35/106 (33.0%) 8 4,856 96 (24.0%) 151/447 (33.8%) 6 4 4 2

3 AnkiDroid (2.15.4, 5Mś10M, 66513) 6/19 (31.6%) 1 4,876 124 (20.2%) 101/256 (39.5%) 1 0 1 0

4 Amaze (3.6.0, 100Kś500K, 66126) 72/152 (47.4%) 1 5,621 103 (21.4%) 231/683 (33.8%) 2 1 0 2

5 And-Bible (beta-539.3, 100Kś500K, 20301) 22/45 (48.9%) 2 4,339 63 (34.9%) 144/394 (36.5%) 2 1 1 1

6 AnyMemo (10.11.6, 100Kś500K, 40152) 20/91 (22.0%) 1 5,022 147 (14.3%) 62/203 (30.5%) 1 0 1 0

7 Markor (2.6.0, 50Kś100K, 8356) 31/69 (44.9%) 1 5,388 87 (21.8%) 138/403 (34.2%) 1 1 0 1

8 materialistic (3.3, 50Kś100K, 38468) 35/78 (44.9%) 1 4,852 196 (8.7%) 247/735 (33.6%) 1 0 1 0

9 Transistor (4.0.15, 10Kś50K, 4925) 15/21 (71.4%) 1 4,362 83 (50.6%) 86/238 (36.1%) 2 0 1 1

10 SkyTube (2.987, 100Kś500K, 9615) 16/38 (42.1%) 2 4,961 235 (6.8%) 216/807 (26.8%) 2 1 1 1

11 Aard2 (0.46, 10Kś50K, 9622) 8/23 (34.8%) 1 4,471 68 (51.5%) 47/145 (32.4%) 1 1 0 1

Group Comparisons: Other Genie evaluated apps, Genie’s evaluated version

12 ActivityDiary (1.4.0, 1Kś5K, 6966) 31/69 (44.9%) 7 4,335 77 (24.7%) 115/310 (37.1%) 3 4 3 0

13 Tasks (6.6.5, 100Kś500K, 46828) 12/17 (70.6%) 2 4,516 133 (16.5%) 71/203 (35.0%) 2 1 1 1

14 UnitConverter (5.5.1, 1Mś5M, 4167) 50/106 (47.2%) 2 5,013 179 (11.2%) 126/246 (51.2%) 2 1 1 1

15 SimpleTask (10.3.0, 10Kś50K, 3767) 13/16 (81.2%) 1 4,562 169 (13.6%) 0/153 (0.0%) 0 1 0 0

16 Fosdem (1.6.2, 10Kś50K, 8188) 30/71 (42.3%) 1 5,012 207 (9.2%) 142/299 (47.5%) 1 0 1 0

17 MyExpense (3.0.9.1, 500Kś1M, 77155) 6/41 (14.6%) 1 4,912 205 (8.8%) 0/291 (0.0%) 0 1 0 0

Summary 26/63 (41.3%) 34 4,830 143 (18.2%) 118/364(32.4%) 28 17 17 11

1 Column Subjects lists the information of each subject. For Genie and Odin, column #TP/#Reports displays the numbers of true positive/all reports for each subject
and the TP rate in the brackets, and column displays the numbers of detected distinct bugs. For Odin, the number of automatically generated test inputs and the
number of GUI states in the mined model along with the state coverage (a state is considered covered if Odin finishes mining may beliefs for it) are displayed in
column #Inputs and #State (Cov), respectively. Finally, column Comparison plots the venn diagrams of the sets of bugs detected by Genie alone, Odin alone, and
both, respectively.

removes all non-interactive widgets and sets the values of all at-

tributes except 𝑡𝑦𝑝𝑒 to⊥ for all remaining widgets in the GUI layout.

This is a common abstraction criteria adopted by existing tech-

niques [5, 34, 36]. Moreover, for anomaly detection Odin-Simple

directly uses the mean and standard deviation of all clusters in-

stead of the ones of the majority subset to calculate z-scores. For

Odin-NoCalib, we let it use the same automatically generated test

inputs as Odin, and gave it 36 hours for behavior manifesting and

anomaly detection. For Odin-Simple, we let it mine may beliefs and

detect anomalies on all the GUI layout pairs produced byOdinwith

no time limitation. We compare the reports and detected distinct

non-crashing bugs of these variants on the 11 randomly selected

subjects of Group Randoms.

To answer RQ4 and RQ5, we further analyzed Odin’s reports

and detected bugs, the corresponding execution traces, and the

related code of the apps, to determine the root causes of false reports

and the bugs, respectively. All experiments were conducted on a

server running Ubuntu 18.04 LTSwith 32-core AMDRyzen 2990WX

CPU, 128G RAM, and 16 Android 7.1.1 emulators.

5.2 Evaluation Results: Bug Finding

Bugs Found. The overall results in Table 1 show thatOdin comple-

ments Genie in finding non-crashing functional bugs. Considering

that only ∼5,000 traces are used in the experiments due to the time

limit, Odin would have potential to reveal even more non-crashing

functional bugs given truly massive traces.

After eliminating false and duplicated reports, we found that

Odin and Genie reported 28 and 34 distinct non-crashing func-

tional bugs, respectively. 17 of the bugs are overlapping. The Venn

diagrams in the last column of Table 1 displays the detailed results.

In the subjects of the Randoms and the Comparisons, Genie re-

ported 20 and 14 functional bugs, respectively, while Odin reported

20 and 8, respectively. On average, Genie output 63 bug reports for

each app, 26 (41.3%) of which were true, while Odin output 364

reports for each app, 118 (32.4%) of which were true. Odin reported

more duplicated reports because there can be multiple GUI model

states representing semantically similar GUI layouts that respond to

(slightly) different sets of events, and from these GUI model states

Odin identifies the same non-crashing functional bugs and reports

each individually.

Previously UnknownBugs. Odin and Genie are also complemen-

tary to each other in detecting previously unknowns non-crashing

functional bugs. Among all true-positive bugs reported by Odin

in the apps of the Randoms group, we reported five previous un-

known bugs (listed in column New in Table 2) by excluding bugs

already in the issue tracking system. Genie reported four previ-

ously unknown bugs (two in Amaze and two in SkyTube), two of

which were also reported by Odin. Developers confirmed all these

previously unknown bugs.

Discussions. For RQ1 (bug finding), we argue that Odin comple-

ments Genie, and the major limitation of Odin is the unavailability

of truly massive traces that thoroughly manifests app behaviors for

all GUI model states.

For the 17 bugs detected by both Odin and Genie, we found that

they indeed fall into the scopes of both tools. Specifically, we found
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Table 2: Comparison results between different variants of Odin on the Randoms

ID Subject
Inputs Odin Odin-NoCalib Odin-Simple

#Input #State Cov #TP/#Report New Cov #TP/#Report #TP/#Report

1 Wikipedia 5,015 261 8.0% 136/381 (35.7%) 1 7.3% 99/290 (34.1%) 1 0/142 (0.0%) 0 (-1)

2 AntennaPod 4,856 96 24.0% 151/447 (33.8%) 6 19.8% 52/226 (23.0%) 3 (-3) 16/115 (13.9%) 2 (-4)

3 AnkiDroid 4,876 124 20.2% 101/256 (39.5%) 1 20.2% 93/194 (47.9%) 1 29/385 (7.5%) 1

4 Amaze 5,621 103 21.4% 231/683 (33.8%) 2 19.4% 151/493 (30.6%) 1 (-1) 163/672 (24.3%) 1 (-1)

5 And-Bible 4,339 63 34.9% 144/394 (36.5%) 2 33.3% 94/264 (35.6%) 1 (-1) 81/272 (29.8%) 1 (-1)

6 AnyMemo 5,022 147 14.3% 62/203 (30.5%) 1 16.3% 52/164 (31.7%) 1 0/181 (0.0%) 0 (-1)

7 Markor 5,388 87 21.8% 138/403 (34.2%) 1 23.0% 103/342 (30.1%) 1 30/178 (16.9%) 1

8 materiaListic 4,852 196 8.7% 247/735 (33.6%) 1 6.6% 147/644 (22.8%) 1 0/103 (0.0%) 0 (-1)

9 Transistor 4,362 83 50.6% 86/238 (36.1%) 2 53.0% 75/191 (39.3%) 2 31/108 (28.7%) 1 (-1)

10 SkyTube 4,961 235 6.8% 216/807 (26.8%) 2 5.5% 168/651 (25.8%) 1 (-1) 0/203 (0.0%) 0 (-2)

11 Aard2 4,471 68 51.5% 47/145 (32.4%) 1 55.9% 34/98 (34.7%) 1 23/87 (26.4%) 1

Summary 4,888 133 18.0% 142/427 (33.3%) 20 5 17.3% 97/323 (30.0%) 14 (-6) 34/222 (15.3%) 8 (-12)

1 Column ID lists the id of each subject in Table 1. The numbers of generated test inputs and GUI model states in the mined model are displayed in column #Input and
#State, respectively. For the three variants Odin (with calibration), Odin-NoCalib, and Odin-Simple, column Cov lists the state coverage of the GUI model (Odin-Simple
shares the same number as Odin), column #TP/#Report displays the numbers of true positive/all reports for each subject and the TP rate in the brackets, and column
displays the numbers of detected distinct bugs. For the standard version of Odin, column New additionally lists the number of detected previously unknown bugs.

that these bugs are rare of occurrences and lead to violations of

metamorphic relations utilized by Genie.

For the 11 bugs detected by Odin but not Genie, we found most

(8/11, 73%) of them are beyond Genie’s independent assumption.

Two comparable GUI layout sequences can be obtained by (1) Ex-

ecuting a single functionality of the app, and (2) executing it se-

quentially after executing another functionality independent from

it. Genie designs metamorphic relations between these sequences,

and identifies violations of these relations caused by the incorrect

inference between executing the two independent functionalities.

Though effective, many bugs does not concern such incorrect infer-

ences, and thus may escape Genie’s detection. For instance, Genie

failed to detect the motivating bug example in Figure 2. On contrast,

Odin successfully reported this previously unknown functional bug.

The other three functional bugs missed by Genie require complex

event sequences to manifest, which Genie failed to generate.

For the 17 bugs reported by Genie but not Odin, many (9/17) of

them were due to the corresponding GUI model states were not

covered. A GUI model state is covered if Odin finishes manifesting

behaviors and mining may beliefs for it. As Table 1 shows, even

with 16 emulators and 36 hours, Odin could only cover a small

portion of the GUI model states (18.2%) because executing a test

input is extremely time-consuming [40].

As a qualitative and supplementary experiment, we gave Odin

sufficient time (108 hours) to cover all GUI model states on Activi-

tyDiary (a relatively small app among all experimental subjects),

and three of four missed bugs were correctly identified by the belief

mining. Therefore, efficient test execution mechanisms [40] could

be a potential research direction for enhancingOdin. There are also

4/17 missed bugs because test input generators failed to manifest

them. Therefore, more effective test input generators also benefits

Odin in bug finding.

Finally, we found a fraction of bugs (4/17) missed by Odin were

manifested by a considerable fraction of test inputs reaching the

corresponding GUI model states, because calibration procedure did

not generate enough additional inputs for these models, which hide

deep in the GUI model. These bugs were thus regarded as normal

behaviors instead of anomalies. This suggests that the calibration

procedure may be further improved in the future.

5.3 Evaluation Results: Test Input Calibration

As shown in Table 2, if the calibration procedure is disabled (Odin-

NoCalib), 6/20 (30%) bugs are missed, and we do not observe signif-

icant changes to the GUI model state coverage and true positive rate.

All these missed bugs are are due to the skewed distributions of

automatically generated test inputs: the erroneous GUI model states

occurred too frequently in the traces to be identified as deviant

behavior.

5.4 Evaluation Results: May-Belief Mining

As shown in Table 2, bug finding capability is significantly reduced

if we adopt a trivial clustering algorithm (Odin-Simple) that adopts

a fixed abstraction criteria and uses themean and standard deviation

of all clusters to calculate z-scores, indicating that our hierarchical

clustering and anomaly detection algorithm is effective in mining

may beliefs and detecting anomalies.

Specifically, 12/20 (60%) bugs are missed because either (1) Odin-

Simple over- or under-abstracted the GUI layouts, and incorrectly

clustered normal and anomaly behaviors together or put similar

behaviors into different clusters, or (2) the clusters were too few,

and the anomaly ones largely affected the z-scores.

5.5 Evaluation Results: False Positives and
Duplicated Bug Reports

False Positives. As shown in Table 1, approximately 2/3 of Odin’s

bug reports are false positives. Furthermore, there may also be

duplicated bug reports on the same root cause. The root causes of

false positives are:

(1) Imprecise GUI layout model (47%). We adopted the Swift-

Hand [8]’s algorithm for GUI state model construction, and

semantically dissimilar states may be erroneously grouped
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together. This is a fundamental limitation for any GUI layout-

based approach [5, 14], and this limitation may be alleviated

by developer-provided models.

(2) Rare but normal behaviors (32%). Some functionalities of an

app are hidden deep and require a complex input to exer-

cise, making our test input calibration procedure insufficient.

Increasing the runtime of test calibration will yield more

balanced test inputs for these states.

(3) Unstable replay (21%). How to stably replay an execution

trace is another open challenge [24, 34]. Operations such as

network accessing can have non-deterministic latent effect

on the app’s execution, leading to rare but correct behav-

iors. This can be tackled with more advanced trace replay

techniques.

Duplicated Reports. We manually analyzed the GUI execution

traces and related code of true reports to determine whether they

are duplicated. As shown in Table 1, Odin can produce duplicated

reports (∼ 100 bug reports revealing ∼ 1.6 distinct bugs per app).

Discussions. Despite the relative high false positive rates and the

existence of duplicated reports, we believe that they do not signifi-

cantly hinder the practical benefits of Odin for finding otherwise

hard-to-detect bugs.

First, in our evaluation, Odin has already significantly narrowed

down the scope for manual examination by filtering out ∼98.7% of

the traces (∼28,000 traces were generated for each app, and there

were ∼360 reports). Wemanually examined all the remaining traces

(several hours for each app), resulting in ∼1.6 bugs per app. Consid-
ering that we found previously unknown bugs in well-tested apps,

such an effort is worthwhile and reasonably moderate. For example,

the file managing app Amaze has 50+ manually written regressions

test cases which evolved over time. Nonetheless, Odin detected a

previously unknown bug (shown in Fig 2) in its frequently used

functionality, which can severely affect user experience. The devel-

opers quickly fixed the bug in the first revision after confirming our

report, and explicitly documented it in the Changelog for v3.6.2.

Furthermore, there are opportunities to further reduce human

labor:

(1) For practical usage, one can first fix a bug detected by Odin

and then eliminate its duplicates by checking the remaining

traces against the patched app. As bug duplication for non-

crashing functional bugs is still a challenging open issue,

this is the typical process currently adopted in practice [36].

(2) Better visualization of test cases (Odin used a simple vi-

sualization) and test case triaging can reduce the time for

checking a trace. Checking a trace often takes less than one

minute for a developer familiar with the app.

Such limitations may also be alleviated by future research on

reducing false positives and duplication.

5.6 Evaluation Results: Bug Types

The 28 bugs found by Odin are categorized as follows:

(1) Incorrect inferences between event handlers (14/28, 50%). An

app can be exercised in different scenarios, in some of which

multiple (dependent or independent) event handlers that

may incorrectly affect each other’s execution can be invoked

simultaneously or sequentially. For example, Transistor

provides search suggestions if more than three characters

are entered in the search bar. However, a race condition in-

correctly results in app denial-of-service without a crash if a

user quickly deletes the characters before search suggestions

are returned.

(2) Improperly handled data format (8/28, 29%). An app can have

functionally similar reactions to different data formats, and

some case handler code may be buggy. For example, Anten-

naPod cannot properly process a subscribed podcast when

its metadata is in a less popular CSV format, and incorrectly

recognizes audios in the podcast as videos.

(3) General coding mistakes (4/28, 14%) Some non-crashing func-

tional bugs are the results of general coding mistakes, e.g.,

third-party library misuse or incorrect program logic.

(4) Incompletely implemented functionalities (2/28, 7%). Due to

tight development schedule, some rarely used functionalities

of an app may leave unimplemented, e.g., untranslated texts

on rarely used languages.

5.7 Discussions

Finding Non-Crashing Functional Bugs. Finding hidden non-

crashing functional bugs in an app is far from trivial. Many bugs (in-

cluding the five previously unknown ones) are fromwell-maintained

apps, some are even from apps with extensive manual test cases

(e.g., AnkiDroid contains over 200 manually written UI/unit test

cases with assertions for correctness checking).

Considering the challenges even for experienced developers to

find such non-crashing functional bugs, the runtime overhead (for

generating and calibrating massive traces) and false positives could

be acceptable for developers.

Existing Non-Crashing Functional Bug Oracles. Before Odin,

non-crashing functional bugs can be automatically detected by

differential-basedmetamorphic relations. Thor [1] and SetDroid [37]

perturb a trace by injecting neutral event sequences. Genie [36] ex-

tends this idea by injecting a łlikely independentž in-app operations.

Metamorphic testing is a fundamentally different scope compared

with Odin, and thus we compared only with the state-of-the-art

technique Genie [36].

Threats to Validity. The representativeness of selected test sub-

jects can affect the fidelity of our conclusions. To mitigate this

threat, we selected additional evaluation subjects from popular

benchmarks evaluated in existing work. These subjects are (1) large

in size (around 76 KLoC on average), (2) well-maintained (contain-

ing thousands of revisions and hundreds of issues on average), (3)

popular (all have 10K+ downloads), and (4) diverse in categories.

Moreover, we selected the exact same versions of subjects used to

evaluate Genie to provide a direct comparison.

The evaluated techniques (including Odin) involve randomness,

and subjects may be non-deterministic. To mitigate this threat,

the bootstrapping test input generation tools for both Genie and

Odin were given sufficient time to cover almost all states they

can explore. Moreover, we manually analyzed the reported bugs

and identified that (1) most (8/11=73%) Odin-unique bugs are due

to fundamental limitations of Genie, thus unlikely to be found

by Genie on independent runs, and (2) many Genie-unique bugs
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(9/17=53%) might be found by Odin because the specific GUI states

were not explored (no clustering performed and thus no bug reports)

before Odin’s timeout. Therefore, we believe that randomness is

not a primary threat to validity, and Odin and Genie are indeed

complementary to each other.

The bug reports of Odin and Genie were manually analyzed to

determine whether they are true positives. Moreover, we manually

identified distinct detected bugs and their root causes. This may

incur imprecision. To mitigate this threat, three authors of this

paper conduct independent examination on all the reports, and

cross-check to ensure correctness.

6 RELATED WORK

Detecting Non-Crashing Functional Bugs in Android Apps.

A few pieces of work proposed for fully automatically detecting

non-crashing functional bugs in Android apps without given ora-

cles. Inspired by metamorphic testing [7], Both Genie and SetDroid

design heuristic metamorphic relations between app execution re-

sults and cross-check for relation violations to detect non-crashing

functional bugs. For instance, SetDroid utilizes the metamorphic

relation that if one changes the system settings and immediately

changes them back, the follow-up execution of the app should not

be affected. Though effective, these metamorphic relations all have

a strong emphasize on the independence of two event fragments,

and many functional bugs fall out of these oracles’ scopes. As our

evaluation results show, Genie missed many bugs because they do

not lead to relation violations. DiffDroid [12] on the Other hand, is

inspired by differential testing [25] and cross-checks for execution

inconsistencies on different devices. Similarly, bugs with consistent

consequences across devices would escape DiffDroid’s detection.

Our deep-state differential analysis does not rely on these symp-

tomatic features of non-crashing functional bugs in Android apps.

Inspired by the łbugs as deviant behaviorsž [11] idea, it captures

the statistical features of the bugs. Therefore, it can detect bugs

with various symptoms and root causes. As our evaluation results

demonstrate, our approach well complements existing techniques.

Most existing techniques still require manually written oracles,

and mainly focus on enhancing these oracles’ detecting abilities.

Thor [1] and executes test suites in adverse conditions and check if

the manually written assertions still hold. QUANTUM[44] utilizes

manually provided GUI models as oracles and accordingly exam-

ines app behavior under specific user interactions. AppFlow [15]

and ACAT [32] utilize machine learning techniques to combine

test inputs and oracles from manually written ones for testing

complex app functionalities. FARLEAD-Android [16] accepts GUI-

level formal specifications as manually written Linear-time Tem-

poral Logic formulas as oracles. Finally, AppTestMigrator [6] and

CraftDroid [20] migrate test inputs and oracles from other apps to

examine the functional correctness of the app under test. These

techniques require tremendous manual efforts to provide required

oracles or specifications, while Odin requires no manual guidance.

In conclusion, most existing techniques heavily rely on manually

provided oracles and specifications to detect non-crashing func-

tional bugs, while a few fully automated ones detect specific types

of non-crashing bugs. This motivates the design of Odin.

Detecting Non-crashing Functional Bugs in Traditional GUI-

Based Softwares. For traditional GUI-based programs such as

web applications and desktop programs, manually provided oracles

also play an essential role for detecting non-crash functional bugs.

For instance, Memon et al. proposed a series of work [26ś28, 42]

that derive oracles for desktop programs from manually provided

GUI models or specifications. These techniques cannot be directly

applied to Android apps, and they still require manual guidance.

The Must/May Belief. The classic must/may belief was proposed

by Engler et al. [11] for detecting functional bugs in operating

systems as deviant behaviors. Be a generic methodology, the must/-

may belief has been utilized in various research topics, including

specification mining [3, 19, 33, 43], race detection [10, 22], fault

localization [21, 29, 31], etc.

A few techniques infer must beliefs from manually written ora-

cles for detecting non-crashing functional bugs in Android apps.

For instance, Thor [1] infers must beliefs that if a test case passes

the manually written assertions, inserting a neutral action (e.g.,

rotating the screen and back) into the test case should not change

the outcome. To the best of our knowledge, we are the first to

fully automatically infer may beliefs for detecting non-crashing

functional bugs in Android apps without given oracles.

7 CONCLUSION

Leveraging the insight that a large number of traces obtained by

executing automatically generated test inputs can reach a similar

GUI layout, and only a small portion of them reach erroneous app

states, this paper presents a generic, novel, and automatic oracle

named deep-state differential analysis for detecting non-crashing

functional bugs in Android apps by manifesting both normal and

deviant app behaviors via extending calibrated test inputs, and

clustering them to mine may beliefs and detect anomalies. We im-

plemented our technique into a exploratory prototype Odin, and

the evaluation results demonstrate that Odin can effectively detect

non-crashing functional bugs in real-world Android apps, a consid-

erable portion of them cannot be detected by existing techniques.

As a first exploratory work, the deep-state differential analysis

technique provides an new direction for detecting non-crashing

functional bugs. Based on the proof-of-concept prototype, a diverse

range of technologies can be applied in the future enhancement

of this technique. Promising research directions include utilizing

information in the traces beyond GUI layouts, such as app logs

and method invocation sequences, to calibrate automatically gen-

erated test inputs and mine may beliefs, and human-in-the-loop

approaches to filter out false positive results.
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